

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.





          

      

      

    

  

    
      
          
            

Index



 L
 


L


  	
      	LCP


  







          

      

      

    

  

    
      
          
            
  
Siconos

|  ubuntu-14-04-gcc-atlas-lapack   |
|----------------------------------------|
|[image: Build Status] [https://travis-ci.org/siconos/siconos]|

A software package for the modeling and simulation of nonsmooth dynamical systems in C++ and in Python.

Siconos is an open-source scientific software primarily targeted at modeling and simulating nonsmooth dynamical systems:


	Mechanical systems (rigid or solid) with unilateral contact and Coulomb friction and impact (Nonsmooth mechanics,
contact dynamics, multibody systems dynamics or granular materials).


	Switched Electrical Circuit such as electrical circuits with ideal and piecewise linear components: power converter, rectifier, Phase-Locked Loop (PLL) or Analog-to-Digital converter.


	Sliding mode control systems.


	Biology Gene regulatory networks.




Other applications are found in Systems and Control (hybrid systems, differential inclusions,
optimal control with state constraints), Optimization (Complementarity systems and Variational inequalities),
Fluid Mechanics, Computer Graphics, ...

Read more about Siconos at the Siconos homepage [http://siconos.gforge.inria.fr]




Main components

Each component can be used either from a low-level language like C/C++ or from Python.


siconos/numerics (C)

Collection of low-level algorithms for solving optimization problems arising in the simulation of nonsmooth dynamical systems:


	Complementarity problems (LCP [https://en.wikipedia.org/wiki/Linear_complementarity_problem], MLCP [https://en.wikipedia.org/wiki/Mixed_linear_complementarity_problem], NCP [https://en.wikipedia.org/wiki/Nonlinear_complementarity_problem])


	Friction-contact problems (2D or 3D)


	Second-order cone programming (SOCP)


	Primal or Dual Relay problems


	Finite dimensional Variational Inequality [https://en.wikipedia.org/wiki/Variational_inequality] (AVI and VI)







siconos/kernel (C++)

Library for the modeling and simulation of nonsmooth dynamical systems.


	Dynamical systems formalism: first order systems, Lagrangian and Newton-Euler formulations


	Numerical integration techniques: Event-detecting (event-driven) and Event-Capturing (time-stepping) schemes


	Nonsmooth laws: complementarity, Relay, normal cone inclusion, Friction Contact, Newton impact, multiple impact law.







siconos/mechanics (C++)

Component for the simulation of mechanical systems in interaction with their environment:


	Contact detection procedure between simple primitives (homemade) and meshes bullet3 [https://github.com/bulletphysics/bullet3]


	Contact detection between Brep representation based on oce. Open CASCADE Community Edition [https://github.com/tpaviot/oce] and on pythonOCC [https://github.com/tpaviot/pythonocc] 3D CAD/CAM package for python







siconos/control (C++)

Library to add a controller to a simulation. For now almost all the implemented control schemes are based on sliding modes with an implicit discretization.




siconos/io (C++)

This component can be used to


	serialize almost any simulation using boost::serialization [http://www.boost.org/doc/libs/1_60_0/libs/serialization/doc/index.html]


	generate mechanical examples from HDF5 and to write HDF5 in view of visualization through vtk [http://www.vtk.org]









License

Siconos is currently distributed under Apache Licenses (v2).


The archetypal example: "The bouncing ball"

from siconos.kernel import LagrangianLinearTIDS, NewtonImpactNSL,\
LagrangianLinearTIR, Interaction, Model, MoreauJeanOSI,\
TimeDiscretisation, LCP, TimeStepping
from numpy import eye, empty

t0 = 0       # start time
T = 10       # end time
h = 0.005    # time step
r = 0.1      # ball radius
g = 9.81     # gravity
m = 1        # ball mass
e = 0.9      # restitution coeficient
theta = 0.5  # theta scheme

# the dynamical system
x = [1, 0, 0]    # initial position
v = [0, 0, 0]    # initial velocity
mass = eye(3)  # mass matrix
mass[2, 2] = 2. / 5 * r * r
ball = LagrangianLinearTIDS(x, v, mass)
weight = [-m * g, 0, 0] 
ball.setFExtPtr(weight) #set external forces
# Interaction ball-floor
H = [[1, 0, 0]]
nslaw = NewtonImpactNSL(e)
relation = LagrangianLinearTIR(H)
inter = Interaction(nslaw, relation)
# Model
bouncingBall = Model(t0, T)
# add the dynamical system to the non smooth dynamical system
bouncingBall.nonSmoothDynamicalSystem().insertDynamicalSystem(ball)
# link the interaction and the dynamical system
bouncingBall.nonSmoothDynamicalSystem().link(inter, ball)
# Simulation
# (1) OneStepIntegrators
OSI = MoreauJeanOSI(theta)
# (2) Time discretisation 
t = TimeDiscretisation(t0, h)
# (3) one step non smooth problem
osnspb = LCP()
# (4) Simulation setup with (1) (2) (3)
s = TimeStepping(t, OSI, osnspb)
# end of model definition

# computation
bouncingBall.setSimulation(s)
bouncingBall.initialize() # simulation initialization
N = (T - t0) / h # the number of time steps
# time loop
while s.hasNextEvent():
    s.computeOneStep()
    s.nextStep()











          

      

      

    

  

    
      
          
            
  

Credits



The Siconos project was started by Vincent Acary and the members of the Bipop Team at INRIA Grenoble Rhone Alpes. It was the outcome of
an FP5 European project.  Many other people have since contributed their talents to help make Siconos what it is today.Here's a list, more or less chronological:

.. this is modeled directly, and shamelessly, on: http://eigen.tuxfamily.org/index.php?title=Main_Page#Credits


	Vincent Acary, 2004 --


	Franck Pérignon, 2006 --


	Maurice Brémond, 2008 --


	Olivier Huber, 2011 --


	Stephen Sinclair, 2016 --


	Narandra Akakdhar, 2012 --


	Charles-Edouard Ladari. 2015


	Roger Pissard--Gibollet 2004--2013


	Olivier Bonnefon, 2007--2009


	Pascal Denoyelle, 2005--2008


	Jan Michalcsyk, 2012--2014


	Ngoc-Son Nguyen 2012


	Aneel Tanwani 2012


	Thorsten Schindler 2010--2012


	Hong Ha Do, 2012


	Hakim Majidi, 2008


	Abdelaziz N'Diaye, 2006


	Remy Mozul, 2006


	Pierre-Brice Wieber, 2006


	Tomasz Toczek, 2006


	Francois Garrigues, 2006


	Frédéric Dubois, 2004--2006


	Mathieu Renouf, 2005


	Jean-Baptiste Charlety, 2004--2005


	Jérémie Blanc-Tranchant. 2004


	Jean-Michel Barbier, 2004


	Alexandre Ravoux, 2004






          

      

      

    

  

    
      
          
            
  
Some words about nix and siconos

Using nix to build/install siconos

Prereq: source /applis/site/nix.sh


	List which derivations (i.e. which siconos config) are available from current sources




IN SOURCE_DIR:

nix-env -qaP -f .

siconos-full           siconos-1.0.0
siconos-numerics-only  siconos-1.0.0


	build siconos, install it in the store




nix-build -A attribute-name

==> build attribute-name (attribute-name being for example siconos-numerics-only)

Creates a link (@result) in the current dir to siconos in nixstore.


	build and install siconos in your nix environment:




nix-env -f . -iA fclib-gcc6

check for example ~/.nix-profile/lib/ for libsiconos...so

About nix :


	https://nixos.org/nixos/manual/


	http://nix-cookbook.readthedocs.io/en/latest/nix-pills.html








          

      

      

    

  

    
      
          
            
  /!\ Draft /!\

Vibrating string with impact based on 'normal modes' spatial discretisation.



          

      

      

    

  

    
      
          
            
  Standard parameter to run the program

siconos FourBarClearance.cpp 0.055000 0.055000 0.055000 200 10



          

      

      

    

  

    
      
          
            
  
Contacts


Siconos development team

INRIA - Bipop [http://www.inrialpes.fr/bipop/]

E-Mail : siconos-team@lists.gforge.inria.fr

Contributors [https://github.com/siconos/siconos/blob/master/credits.md]







          

      

      

    

  

    
      
          
            
  
User doc

Getting and installing siconos software:



	Installation guide





First steps with siconos …

Start here to get a first glimpse of siconos, with short introduction and tutorials.



	Getting Started





Everything about modeling, simulation and control of nonsmooth dynamical systems in Siconos:



	User guide

	Examples Manual









          

      

      

    

  

    
      
          
            
  
Developer doc

Siconos API reference (Doxygen):

There you can find details about all methods and classes implemented in Siconos.



	Python API reference





For people who contribute to siconos:



	Developer guide









          

      

      

    

  

    
      
          
            
  
Download Siconos


Binaries

Binaries generated for different platforms can be download here: https://gforge.inria.fr/frs/?group_id=9




Sources

Siconos project is hosted on github : https://github.com/siconos/siconos

and the source code can be freely downloaded. Try for example:

git clone git@github.com:siconos/siconos.git





As user, you will probably only need to clone the repository (as shown above) once and then just update your local copy to
include the last revision:

cd path-to-siconos
git pull





As developer, you will need to learn more about git. Check for example https://git-scm.com/book/en/v1/Getting-Started-About-Version-Control.

Below, you can find a short git refresher:


	bring your working copy “up-to-date” with the github repository:

git pull --rebase







	commit the new version of your file(s) to your local repository:

git commit -a -m "some comments"







	check the status of your local repository:

git status







	add a file to the index:

git add filename







	remove a file from the index:

git rm filename







	see diff between your branch (here master) and another one (here the remote origin):

git diff origin master







	see the list of files which differ:

git diff origin master --stat







	propagate your changes to the main repository:

git push















          

      

      

    

  

    
      
          
            
  
Siconos License

Siconos is a program dedicated to modeling, simulation and control
of non smooth dynamical systems.

Copyright 2016 INRIA.

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.





          

      

      

    

  

    
      
          
            
  
Related Projects and Platforms


Control Engineering Softwares


	Modelica [http://www.modelica.org/], Modeling of Complex Physical Systems. The object-oriented modeling




language Modelica is designed to allow convenient, component-oriented modeling of complex physical systems, e.g., systems
containing mechanical, electrical, electronic, hydraulic, thermal, control, electric power or process-oriented subcomponents.
The free Modelica language, free Modelica libraries and Modelica simulation tools are available, ready-to-use and have been utilized in demanding industrial
applications, including hardware-in-the-loop simulations. The development and promotion of Modelica is organized by the non-profit Modelica Association.
More, see overview article … [http://www.modelica.org/documents/ModelicaOverview14.pdf].


	Orocos, [http://www.orocos.org] , a European project, started in 2001. It aims at producing an open source software framework, by providing a functional basis for general robots control.


	Motion Strategy Library [http://msl.cs.uiuc.edu/msl/index.html] : “allows easy development and testing of motion planning algorithms for a wide variety of applications.”


	NICONET [http://www.win.tue.nl/niconet/] is a European thematic network project with the aim of formalising and extending current collaboration with respect to robust numerical software for control systems analysis and synthesis.







Engineering Mechanics Softwares


Multibody systems


	mjbWorld [http://www.martinb.com/] (GPL license) is a program for 3D simulation of dynamics.


	DynaMechs [http://dynamechs.sourceforge.net/], a GPL library for simulation of multibody dynamics.


	MBDyn [http://www.aero.polimi.it/projects/mbdyn/], a Multi Body Dynamics analysis system.







Structures and Finite element applications


	LMGC90 [https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user/wikis/home] a free and open source software dedicated to multi-physics simulation of discrete material and structures. Siconos/numerics can be used as a solver for those problems.


	IFER [http://www.engr.usask.ca/%7Emacphed/finite/fe_resources/fe_resources.html] - Internet Finite Element Resources


	OpenFem [http://www.openfem.net] is an open-source software freely distributed under the terms of the GNU Lesser Public License [http://www.fsf.org/copyleft/lesser.html] (LGPL). It is also a registered trademark of INRIA [http://www.inria.fr] and SDTools [http://www.sdtools.com].


	FreeFem++ [http://www.freefem.org/ff++/index.htm], which is an implementation of a language dedicated to the finite element method. It enables you to solve Partial Differential Equations (PDE) easily.


	GETFEM++ [http://www.gmm.insa-tlse.fr/getfem/]


	Zebulon [http://www.nwnumerics.com] is an advanced object oriented FEA program with many non-linear solution capabilities. The program is designed to be flexible for the user and provide solution options not found in other codes. We are aggressively developing cutting edge methods and multi-physics applications. The program is designed to be both easy to learn, and powerful to use.


	OOfelie [http://venus.arcride.edu.ar/oofelie.html] Object Oriented Finite Elements Led by Interactive Execution. This project is the result of a collaboration between the Computational Mechanics Group of INTEC and the Laboratoire de Techniques Aéronautiques et Spatiales, University of Liege, Belgium. The objective of this work is to define the architecture of a new finite element program using the C++ programming language. The program is built around an interpreter, which allows the user to define interactively either data as well as algorithms. The program may thus be very easily configured to new computational strategies. See also the non official site [http://garfield.ltas.ulg.ac.be/oo_meta/fr_oometa.htm].







Hybrid Systems


	Virtual Action Group on Hybrid Dynamic Systems for CACSD [http://www-er.df.op.dlr.de/cacsd/hds/index.shtml], Technical Committee on Computer Aided Control System Design. IEEE Technical Committee on <b>Hybrid</b> Dynamical <b>Systems</b>


	DAEPACK [http://yoric.mit.edu/daepack/daepack.html] a component library for combined symbolic/numeric analysis of FORTRAN models.









General Softwares and Libraries for Scientific Computing


	SciLinux: Environment for Scientific Computing on GNU/Linux [http://scilinux.sourceforge.net/]


	Lapack [http://www.netlib.org/lapack/], scalapack [http://www.netlib.org/scalapack/]


	ATLAS, Automatically Tuned Linear Algebra Software [http://math-atlas.sourceforge.net/]


	The GNU Scientific Library [http://sources.redhat.com/gsl/]  a free numerical library for C


	Numerical Recipes [http://www.nr.com/]


	CLN Class Library for Numbers [http://www.ginac.de/CLN/]


	LinAl home page [http://linal.sourceforge.net/LinAl/Doc/linal.html]


	Scientific Applications on Linux (SAL) [http://sal.kachinatech.com/] is a collection of information and links to software of interest to scientists and engineers.


	GAMS [http://www.numis.northwestern.edu/ftp/pub/list-packages.html]


	Mathtools.net: The technical computing portal [http://www.mathtools.net/]


	Freely available software for linear Algebra on the Web a survey [http://www.netlib.org/utk/people/JackDongarra/la-sw.html]







Scientific Computing in C++


	The Object Oriented Numerics Page [http://oonumerics.org/oon]


	LAPACK++: Linear Algebra Package in C++ [http://gams.nist.gov/lapack++/]


	Object Oriented Programming Paradigms in Scientific Computin [http://www-hpc.jpl.nasa.gov/PEP/nortonc/thesis.html]


	Blitz++ [http://www.oonumerics.org/blitz/]


	GMM++ [http://www.gmm.insa-tlse.fr/getfem/gmm.html]


	TNT [http://gams.nist.gov/tnt/], an interface for scientific computing in C++. It provides a distinction between interfaces and implementations of TNT components.


	The Matrix Template Library [http://www.osl.iu.edu/research/mtl/]







Scientific Computing in Python


	SciPy [http://www.scipy.org] an open source library of scientific tools for Python. SciPy supplements the Numeric module, gathering a variety of high level science and engineering modules together as a single package. Within SciPy are modules for graphics and plotting, optimization, integration, special functions, signal and image processing, genetic algorithms, ODE solvers, and others. There is also an experimental “compiler” that takes a Numeric array expression in Python and compiles it to C++ code on the fly.


	Swig: Simplified Wrapper and Interface Generator [http://www.swig.org/], a software development tool that connects programs written in C and C++ with a variety of high-level programming languages. …


	Numerical Python [http://www.numpy.org/] Numerical Python adds a fast, compact, multidimensional array language facility to Python.


	Scientific Python [http://dirac.cnrs-orleans.fr/plone/software/scientificpython/] Konrad Hinsen’s Scientific Python is a module library for scientific computing. In this collection you will find modules that cover basic geometry (vectors, tensors, transformations, vector and tensor fields), quaternions, automatic derivatives, (linear) interpolation, polynomials, elementary statistics, nonlinear least-squares fits, unit calculations and conversions, Fortran-compatible text formatting, 3D visualization via VRML, two Tk widgets for simple line plots and 3D wireframe models. Scientific Python also contains Python interfaces to the netCDF library (implementing a portable binary format for large arrays) and the Message Passing Interface, the most widely used communications library for parallel computers. Konrad Hinsen’s course, Python for Scientists [http://dirac.cnrs-orleans.fr/%7Ehinsen/courses.html] shows how to use scientific python







Specific Developments for Non Smooth Systems

None of the links of this page corresponds to a member of the project.


General theory for non smooth systems




Complementarity problems and Variational inequalities


	CPNET: Complementarity Problem Net [http://www.cs.wisc.edu/cpnet/]


	Complementarity Problems [http://plato.la.asu.edu/topics/problems/mcp.html]


	Professor Michael C. Ferris [http://www.cs.wisc.edu/%7Eferris/]


	Richard W. Cottle [http://www.stanford.edu/dept/MSandE/faculty/rwc/]


	Jong-Shi Pang’s Home Page [http://www.mts.jhu.edu/%7Epang/]







Optimization & Mathematical programming


	Steve Wright [http://www.cs.wisc.edu/%7Eswright/]


	NEOS Server for Optimization [http://www.neos-server.org] - The NEOS Server solvers represent the state-of-the-art in optimization software.


	Optimization Software [http://www-fp.mcs.anl.gov/otc/Guide/softwareGuide/]: linear and nonlinear programming.


	AMPL Modeling Language for Mathematical Programming [http://www.ampl.com/], modeling language and system for formulating, solving and analyzing large-scale optimization (mathematical programming) problems.


	GAMS Modeling Language for Mathematical Programming [http://www.gams.com/], modeling language and system for formulating, solving and analyzing large-scale optimization (mathematical programming) problems. Siconos can call GAMS to solve an optimization problem.







Numerical time integration


	David Stewart [http://www.math.uiowa.edu/%7Edstewart/]







Frictional contact mechanical systems




Electrical systems









          

      

      

    

  

    
      
          
            
  
Talks and Presentations


Posters


	Siconos software.


	Pérignon, M. Brémond.   Euromech colloquium 580, Grenoble, July 2016. Poster [https://github.com/siconos/siconos-tutorials/blob/master/talks/2016-Euromech/poster.pdf].











Slides (in chronological order)


	Time-Integrators for Nonsmooth Dynamics - Siconos Software tutorial. [https://github.com/siconos/siconos-tutorials/blob/master/talks/2016-Dynolin/main.pdf].
V. Acary, F. Pérignon. GdR Dynolin. October 2016.


	The Siconos software in a nutshell [https://github.com/siconos/siconos-tutorials/blob/master/talks/2016-Nutshell/s.pdf].
An opensource software platform for the modeling, the simulation and the control of nonsmooth mechanical and electrical systems.
V. Acary, 0. Bonnefon,  M. Brémond, F. Pérignon. September 2016.


	Siconos software. An opensource platform for the modeling, the simulation and the control of nonsmooth dynamical systems. [https://github.com/siconos/siconos-tutorials/blob/master/talks/2016-Euromech/slides.pdf].
F. Pérignon, M. Brémond.   Euromech colloquium 580, Grenoble, July 2016.


	Mechanical Simulation Of The ExoMars Rover Using Siconos in 3DROV [https://github.com/siconos/siconos-tutorials/blob/master/talks/2013-Astra/main.pdf].
V. Acary, M. Brémond, J. Michalczyk, K. Kapellos, R. Pissard-Gibollet. Astra Conference. May 2013


	Lecture Notes on Numerical methods for nonsmooth mechanical systems
V. Acary. Nonsmooth Contact Mechanics: Modeling and Simulation. Summer school September 2012.



	Introductory lecture [https://github.com/siconos/siconos-tutorials/blob/master/talks/2012-Aussois/Acary-Aussois2012-Lecture0.pdf].


	Lecture 1 Notes on Numerical methods for nonsmooth mechanical systems [https://github.com/siconos/siconos-tutorials/blob/master/talks/2012-Aussois/Acary-Aussois2012-Lecture1.pdf].


	Lecture 2 Notes on Numerical methods for nonsmooth mechanical systems [https://github.com/siconos/siconos-tutorials/blob/master/talks/2012-Aussois/Acary-Aussois2012-Lecture2.pdf].


	Lecture 3 Notes on Numerical methods for nonsmooth mechanical systems [https://github.com/siconos/siconos-tutorials/blob/master/talks/2012-Aussois/Acary-Aussois2012-Lecture3.pdf].









	Siconos software overview. [https://github.com/siconos/siconos-tutorials/blob/master/talks/2008-Overview/main.pdf].
F. Pérignon. Naples, September 2008.
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Some tips to install siconos “easily” on linux-like systems

An easy way to get all the required libraries is to use one of the following command.
It will install the necessary packages for compiling all the components of Siconos.


Fedora


	::

	yum install cmake gcc gcc-gfortran boost-devel atlas atlas-devel atlas-sse3 gmp gmp-devel cppunit cppunit-devel pcre-devel python-matplotlib scipy python-numeric python-devel swig python-py








Fedora 16, 17 or 18


	::

	yum install cmake gcc gcc-gfortran boost-devel atlas atlas-devel atlas-sse3 gmp gmp-devel cppunit cppunit-devel pcre-devel python-matplotlib scipy python-numeric python-devel swig pytest








Fedora 20

We recommand you to use openblas instead of atlas since it provides LAPACKE functions. Power users can still choose their favorite BLAS and LAPACK(E) vendor.:

yum install cmake gcc gcc-gfortran boost-devel openblas openblas-devel gmp gmp-devel cppunit cppunit-devel python-matplotlib scipy python-numeric python-devel swig pytest








Ubuntu Precise


	::

	apt-get install cmake gfortran gcc doxygen libboost-graph-dev libboost-filesystem-dev libboost-serialization-dev libatlas-base-dev libblas-dev libgmp3-dev libcppunit-dev libpcre3-dev python-matplotlib  python-numpy  python-scipy python-dev python-codespeak-lib make g++








Ubuntu Quantal


	::

	apt-get install cmake gfortran gcc doxygen libboost-graph-dev libboost-filesystem-dev libboost-serialization-dev libatlas-base-dev libblas-dev libgmp3-dev libcppunit-dev libpcre3-dev python-matplotlib  python-numpy  python-scipy python-dev python-codespeak-lib make g++ python-pytest








Debian Squeeze


	::

	apt-get install cmake gfortran gcc libboost-graph-dev libatlas-base-dev libgmp3-dev libcppunit-dev libpcre3-dev python-matplotlib  python-numpy  python-scipy python-dev python-codespeak-lib python-py swig2.0 doxygen libboost-filesystem-dev





You will also need to use the backport repository to have a cmake recent enough:

echo "deb http://backports.debian.org/debian-backports squeeze-backports main" >> /etc/apt/sources.list
apt-get update
apt-get -y --force-yes -t squeeze-backports install cmake








Mac Os

We recommend you to use brew to install the dependencies. Even if you have clang, you will need to install gcc because some fortran code has to be compiled in Numerics.
Here is a (probably) incomplete list of ports you have to install: wget, gcc, gmp, cppunit, doxygen, swig-python, py27-numpy, py27-py







          

      

      

    

  

    
      
          
            
  
Installation guide

Whatever your system is, you will need first to :


	Download the sources of Siconos as explained in Getting the sources.


	Create anywhere (but not in path_to_sources) a build directory.


	Check Siconos required and optional dependencies. Most of them are commonly or at least easily installed
on many standard systems.


	Check the list of Valid compilers and platforms on which siconos has been succesfully installed.





The quick way

If you do not want to bother with all installations details and only need a ‘standard’ siconos install, just do

cd path_to_build
cmake path_to_sources
make -j N
make install





N being the number of processes available on your system to run the compilation. Note that you’ll probably need to run the install
command as root.

If all went fine, you will get a full siconos installation in /usr/local, as detailed in What will be installed?
If not, step to Detailed installation.




Detailed installation

The first step of the installation process consists in running ‘cmake’:

cd path_to_build
cmake path_to_sources -DOPTION1_NAME=option1_value -DOPTION2_NAME=option2_value ...





This command will explore your system, to generate an appropriate configuration, and some makefiles, for siconos, taking into account
some extra options, set as shown above. Many extra options exists to customize your build/install process of siconos and most of the available options
are detailled in CMake options.


Remark : In place of the command-line cmake, you can also run:

ccmake path_to_sources ...





to open some dialog-interface to cmake configuration. ‘cmake-gui’ is also another option. For details check cmake documentation : https://cmake.org/runningcmake/.




Once the cmake process is done, you will get many generated files in path_to_build, including a Makefile and a CMakeCache.txt. The latter contains all
the variables set during configuration. Do not forget to check the screen output of cmake to be sure that everything went fine.

Then you are ready to build siconos libraries and binaries:

make -j N





Or if you want to build a single target:

make target_name -j N





All available targets are obtained with:

make help





Optionnaly (if WITH_TESTING is ON), you can run tests to check you build. See Running siconos tests.

The last step is the installation of all required libraries, headers and so on in the right place:

make install -j N





Use CMAKE_INSTALL_PREFIX option to choose the path for your installation. If not set a default path is chosen, usually /usr/local (that depends on your system).




Getting the sources

Siconos is freely available on github, https://github.com/siconos/siconos, so for example just run:

git clone git@github.com:siconos/siconos.git





and you will get a directory ‘siconos’ which contains all the sources. This directory will be denoted path_to_sources in the following.




Siconos package description

Siconos software is made of 4 components:


	numerics (C api). A collection of low-level algorithms for solving basic Algebra and optimization problem arising in the simulation of nonsmooth dynamical systems.


	kernel (C++ api), used to model and simulate nonsmooth dynamical systems.


	control (C++ api)


	mechanics (C++ api)




[image: figures/siconos_components.*]
TODO : describe siconos distribution (main directories, files and so on)




Running siconos tests

You must enable tests with option WITH_TESTING=ON for cmake. To activate tests only for some chosen component, use:

cmake -DWITH_<COMPONENT_NAME>_TESTING=ON





Then to run all tests:

make -j N test





To run only a set of tests, for example number 10 to 14:

ctest -VV -I 10,14





‘-V’ or ‘-VV’ is used to enable verbose and extra verbose mode. For other options, try ‘man ctest’ or check ctest documentation, https://cmake.org/documentation/.

To run python tests only:

cd path_to_build
py.test





Or in verbose mode:

cd path_to_build
py.test -s -v





Just a specific python test:

cd path_to_build
py.test -s -v wrap/siconos/tests/test_lcp.py






	Concerning py.test, see http://pytest.org/latest/ or::

	py.test -h








What will be installed?

For siconos_install_path being the value you choose for siconos install, running ‘make install’ will result in:


	siconos_install_path/lib/ with all shared libraries of the siconos components you asked for.


	siconos_install_path/include/siconos/ with all headers files needed by siconos


	siconos_install_path/share/siconos/ : extra files like cmake configuration, doc or anything that may be required at runtime


	siconos_install_path/bin/siconos : a script to run siconos simulation (see Test your installation).





Remark

if siconos_install_path is not a standard path of your system, you may need to set some environment variables, mainly:


	append siconos_install_path/bin to PATH









CMake options

Most options are like ‘-DWITH_XXX=ON or OFF to enable or disable some behavior or some interface to other libraries.
If ON, the cmake system will search for XXX libraries, headers, or anything required on your system and will end up in error if not found.


Most common options


	CMAKE_INSTALL_PREFIX=some_path : to change the default path of Siconos installation. Default depends on your system. For example on unix-like
system, it is usually /usr/local.


	WITH_DOCUMENTATION=ON (OFF) : to enable (disable) the generation of siconos source code documentation and manuals generation.


	WITH_PYTHON_WRAPPER=ON (OFF) : to enable (disable) the generation of a python interface to siconos.


	WITH_CMAKE_BUILD_TYPE=Debug, Release, … : to choose the build mode, i.e. the default compiler flags used to build siconos.


	WITH_TESTING : to enable/disable tests







Developers or advanced users options


	DEV_MODE=ON (OFF) : activate developper mode, which means for example some more aggressive options for compilations, more outputs and so on


	WITH_MUMPS=ON/OFF : to enable/disable mumps library (http://mumps.enseeiht.fr)


	WITH_FCLIB=ON/OFF : to enable/disable fclib interface


	WITH_DOXYGEN_WARNINGS=ON/OFF : verbose mode to explore doxygen warnings generated for siconos


	WITH_SERIALIZATION :


	WITH_GENERATION:


	WITH_CXX=ON/OFF : to enable/disable c++ compilation of the numerics package


	BUILD_SHARED_LIBS=ON/OFF : to build shared (ON) or static (OFF) for the siconos package.


	WITH_BULLET=ON/OFF : enable/disable bullet (http://bulletphysics.org/wordpress/) for contact detection.


	WITH_OCC=ON/OFF : enable/disable OpenCascade bindings (https://github.com/tpaviot/oce)


	WITH_FREECAD=ON/OFF : enable/disable Freecad python bindings (http://www.freecadweb.org)


	WITH_MECHANISMS=ON/OFF: enable/disable usage of Saladyn machanisms toolbox.


	WITH_DOXY2SWIG=ON/OFF : enable/disable conversion of doxygen outputs to python docstrings




For example, to build siconos with documentation for all components, no python bindings and an installation in ‘/home/myname/mysiconos’, just run:

cd build_directory
cmake -DCMAKE_INSTALL_PREFIX='/home/myname/mysiconos' -DWITH_PYTHON_WRAPPER=OFF -DWITH_DOCUMENTATION=ON *path_to_sources*





But when you need a lot of options, this may get a bit tedious, with very long command line. To avoid this, you can use
User-defined option file.






User-defined option file

To avoid very long and boring command line during cmake call, you can write a ‘myoption.cmake’ and call:

cd build_directory
cmake -DUSER_OPTIONS_FILE=myoption.cmake path_to_sources





Warnings:


	your file MUST have the ‘.cmake’ extension


	if you provide only its name to USER_OPTIONS_FILE, your file must be either in path_to_sources or in path_to_build directory
else, you must give the absolute path to your file, for example:

cmake -DUSER_OPTIONS_FILE=/home/myname/myoptions_for_siconos.cmake path_to_sources









To write your own file, just copy the file default_options.cmake (in path_to_sources/cmake) and modify it according to your needs.

Here is an example, to build numerics and kernel, with documentation, no tests …:

# --------- User-defined options ---------
# Use cmake -DOPTION_NAME=some-value ... to modify default value.
# !!! Warning : do not suppress any line below, just set ON/OFF value !!!
option(WITH_DOCUMENTATION "Build Documentation. Default = OFF" ON)
option(WITH_PYTHON_WRAPPER "Build python bindings using swig. Default = ON" ON)
option(WITH_DOXYGEN_WARNINGS "Explore doxygen warnings." OFF)
option(WITH_DOXY2SWIG "Build swig docstrings from doxygen xml output. Default = ON." OFF)
option(WITH_SYSTEM_INFO "Verbose mode to get some system/arch details. Default = off." OFF)
option(WITH_TESTING "Enable 'make test' target" OFF)
option(WITH_GIT "Consider sources are under GIT" OFF)
option(WITH_SERIALIZATION "Compilation of serialization functions. Default = OFF" OFF)
option(WITH_GENERATION "Generation of serialization functions with gccxml. Default = OFF" OFF)
option(WITH_CXX "Enable CXX compiler for Numerics. Default=ON." ON)
option(WITH_UNSTABLE "Enable this to include all 'unstable' sources. Default=OFF" OFF)
option(BUILD_SHARED_LIBS "Building of shared libraries" ON)
option(DEV_MODE "Compilation flags setup for developpers. Default: ON" OFF)
option(WITH_BULLET "compilation with Bullet Bindings. Default = OFF" OFF)
option(WITH_OCC "compilation with OpenCascade Bindings. Default = OFF" OFF)
option(WITH_MUMPS "Compilation with MUMPS solver. Default = OFF" OFF)
option(WITH_FCLIB "link with fclib when this mode is enable. Default = off." OFF)
option(WITH_FREECAD "Use FreeCAD" OFF)
option(WITH_MECHANISMS "Generation of bindings for Saladyn Mechanisms toolbox" OFF)
option(WITH_XML "Enable xml files i/o. Default = ON" ON)
# Set python install mode:
# - user --> behave as 'python setup.py install --user'
# - standard --> install in python site-package (ie behave as python setup.py install)
# - prefix --> install in python CMAKE_INSTALL_PREFIX (ie behave as python setup.py install --prefix=CMAKE_INSTALL_PREFIX)
set(siconos_python_install "user" CACHE STRING "Install mode for siconos python package")
# List of components to build and installed
# List of siconos component to be installed
# complete list = externals numerics kernel control mechanics io
set(COMPONENTS externals numerics kernel CACHE INTERNAL "List of siconos components to build and install")








Test your installation

When all the installation process is done, you can test your installation by running a simple example.
(for non-standard installation path, mind Remark.). Try one of the numerous files
provided in Siconos Examples package:

siconos BouncingBallTS.cpp





You can also test all examples in a raw:

cd another_build_directory
cmake path_to_sources/Examples
make -jN
make test





This will compile, link and execute all the examples distributed with siconos.

Check Running a simulation for more details on siconos script.







          

      

      

    

  

    
      
          
            
  
Siconos required and optional dependencies


	a compiler suite, with c++, c and gfortran compilers (See Valid compilers and platforms).


	cmake (version > 2.8.7, 3.x will be better) (https://cmake.org)


	boost (http://www.boost.org)


	blas and lapack (see About blas and Lapack)




To generate the documentation, you will need :


	doxygen


	sphinx




For the python bindings:


	python (>= 2.7)


	swig (>= 2.0)




To run tests:


	cppunit







About blas and Lapack

The BLAS (Basic Linear Algebra Subprograms, http://www.netlib.org/blas/) are routines that provide standard building blocks for performing basic vector and matrix operations, while LAPACK (http://www.netlib.org/lapack/#_presentation) provides routines for solving systems of simultaneous linear equations, least-squares solutions of linear systems of equations, eigenvalue problems, and singular value problems.
Different implementations are available, such as:


	atlas (http://math-atlas.sourceforge.net),


	openblas (http://www.openblas.net),


	the one from MKL (https://software.intel.com/en-us/intel-mkl),


	Accelerate framework on Macosx (https://developer.apple.com/library/prerelease/mac/documentation/Accelerate/Reference/BLAS_Ref/index.html) …




For siconos we recommand:


	accelerate on Macosx


	atlas on linux systems


	openblas on Fedora, instead of atlas since it provides LAPACKE functions.




Anyway, power users can still choose their favorite BLAS and LAPACK(E) vendor.

Blas, lapack setup of your system will be checked during cmake call.

If the process failed or if you need a specific implementation, the following variables may be provided to cmake to help the searching process (see Detailed installation)


	WITH_BLAS : Blas implementation type [mkl/openblas/atlas/accelerate/generic]


	BLAS_DIR : Blas implementation location.


	BLAS_LIBRARY_DIR : path to blas libraries


	BLAS_INCLUDE_DIRS : blas headers location(s)


	LAPACK_DIR : Lapack implementation location.


	WITH_LAPACK : Lapack implementation type [mkl/openblas/atlas/accelerate/generic]


	LAPACK_LIBRARY_DIR : path to blas libraries


	LAPACK_INCLUDE_DIRS : blas headers location(s)







About Boost

Boost provides a lot of useful C++ binaries, especially Ublas, a C++ template class library that provides BLAS level 1, 2, 3 functionalities
for dense, packed and sparse matrices.

Ublas is used in Siconos for matrices and vectors definition and implementation.

About Boost: http://www.boost.org/

About Ublas: http://www.boost.org/libs/numeric/ublas/doc/index.htm

Install (note that an adequate Boost version comes with most linux distributions and thus no more install is required.)

To know how to get and install Boost, see
Boost Getting Started.

Note that we also use boost-bindings:
“Boost Bindings is a bindings library (not just) for Boost.Ublas. It offers an easy way of calling BLAS, LAPACK, UMFPACK, MUMPS and many other mature legacy numerical codes from within C++.”

They are distributed and installed with the Siconos but you can also get the last version here:
http://mathema.tician.de/software/boost-bindings




GMP

“GMP is a free library for arbitrary precision arithmetic, operating on signed integers, rational numbers, and floating point numbers … “

This library usually comes with gcc. If not see http://gmplib.org/ for download and installation instructions.





          

      

      

    

  

    
      
          
            
  
Valid compilers and platforms

Siconos 3.8 has been successfully compiled on:


	{i386, amd64} Fedora Core {14, 16 and 17}


	{i386, amd64} Ubuntu {precise, quantal and raring}


	{amd64} mac-osx Yosemeite


	{ia64} linux-debian {squeeze}


	{amd64, ppc64} Gentoo




The following compilers have been reported to work:


	gcc: 4.5.1, 4.6.3, 4.7.2, 4.8.1


	clang: 7.0.0


	Visual Studio 2010




If you have compiled Siconos on another platform successfully, then the maintainer would be glad to hear about that.





          

      

      

    

  

    
      
          
            
  
Developer guide

To do.








          

      

      

    

  

    
      
          
            
  
Introduction

The different siconos libraries may be imported as python
modules. To import all Siconos modules, one may write for example:

The python bindings for siconos try to be as close as possible to the C and
C++ API of the different libraries, but some discrepancies
exist. These are explained in the sequel of this introduction.


Dense matrices and vectors

Standard python [https://www.python.org/] sequences as well as
numpy [http://www.numpy.org/] arrays and matrices may be used as
input for matrices and vectors in the C and C++ API. For
example, with numerics module a linear complementarity problem :

with

and

may be declared like this:

In this python declaration, the M matrix of the linear
complementary problem is:

It is a simple python list of list of float numbers where the rows
of the matrix are the inner lists.

The q vector of the linear complementary problem is:

It is a python list of float numbers.

numpy arrays may also be used in inputs:

This is important: where the parameter is an input as well as an
output parameter, numpy array must be used!

With the kernel and mechanics modules every SimpleMatrix
and SiconosVector may be replaced by python standard sequences
or numpy arrays. For example, we can build a Lagrangian dynamical
system with 3 degrees of freedom like this:

It is possible to use SimpleMatrix and SiconosVector arguments:

Please note that kernel.SimpleMatrix and kernel.SiconosVector
objects cannot be used as arguments to numerics module functions.
The instantiation of previous numerics.LCP can only be done with
standard python sequences or numpy arrays.




Sparse matrices

Scipy [http://www.scipy.org/] sparse matrices must be used in input
where cs_sparse is needed in the C API.

Here is for example the conversion from a sparse compressed column
matrix into a sparse block matrix with blocks of 3 rows and 3 columns:




Omitted parameters

This concerns the C API of the numerics library:



	Where the size of an input vector may be inferred, the size must not be given in the arguments list.


	Output only parameters given in the argument list in the C API are python return parameters







Here is an example that shows both cases:




C++ Visitors

Siconos C++ visitors are not binded. The class of a returned object on the python side is always the true class and never a more general class, so the visitor pattern is not relevant here:




Shared pointers

For Siconos C++ libraries (kernel, io, mechanics, control) the
shared pointer mechanisms is totally hidden and the namespaces SP,
SPC, SPA are not present in the Python modules.

Other differences specific to Siconos Libraries are documented in relevant sections.







          

      

      

    

  

    
      
          
            
  
Python API reference

This is the documentation of python [https://www.python.org/] interface to Siconos.



	Introduction
	Dense matrices and vectors

	Sparse matrices

	Omitted parameters

	C++ Visitors

	Shared pointers





	siconos.numerics
	LCP

	MCP

	MLCP

	AVI

	VI

	FrictionContact





	siconos.kernel
	Modelisation

	Simulation





	siconos.mechanics
	Usage

	Siconos Mechanics API





	siconos.control
	Usage

	Control API





	siconos.io
	Usage

	Siconos IO API













          

      

      

    

  

    
      
          
            
  
siconos.control


Usage




Control API







          

      

      

    

  

    
      
          
            
  
siconos.io


Usage




Siconos IO API







          

      

      

    

  

    
      
          
            
  
siconos.kernel



	Modelisation
	Usage :
	Example of the modelisation of a bouncing ball:

	Example of the modelisation of a diodes bridge:





	Modelisation API





	Simulation
	Usage : example of the simulation of the bouncing ball
	Example of the simulation of a diodes bridge:





	Simulation API













          

      

      

    

  

    
      
          
            
  
siconos.mechanics


Usage




Siconos Mechanics API



	bodies
	Usage

	bodies API





	joints
	Usage

	joints API





	occ
	Usage

	occ API





	tools
	Usage

	tools API















          

      

      

    

  

    
      
          
            
  
siconos.numerics

Nonsmooth problems:



	LCP
	Usage

	LCP API





	MCP
	Usage

	MCP API





	MLCP
	Usage

	MLCP API





	AVI
	Usage

	AVI API





	VI
	Usage

	VI API





	FrictionContact
	Usage

	FrictionContact API













          

      

      

    

  

    
      
          
            
  
AVI


Usage




AVI API







          

      

      

    

  

    
      
          
            
  
FrictionContact


Usage




FrictionContact API







          

      

      

    

  

    
      
          
            
  
LCP


Usage

In python the LinearComplementarityProblem from C API is renamed LCP.

The solution of the problem exposed in Dense matrices and vectors:

import siconos.numerics as Numerics
lcp = Numerics.LCP([[2., 1.], [1., 2.]], [-5., -6.])





can be reached with the Numerics module by first providing a guess. This guess is made of the two vectors z and w. As it will be an input as well
as an output parameter for the solver, we must use a numpy array that can be modified in place. Standard python sequences cannot be modified
in this interface and are not suitable for this kind of parameter:

from numpy import array
z = array([0., 0.])
w = array([0., 0.])





We must also provide a solver options object:

SO = Numerics.SolverOptions(lcp, Numerics.SICONOS_LCP_LEMKE)





That object brings the decision to use a Lemke method. It also allows
the manipulation of the different solver parameters such as the wanted
precision. The integer option parameters are in an iparam array and
the double option parameters are in a dparam array.

For the Lemke method the default precision is the first element of SO.dparam array:

>>> SO.dparam
array([  1.00000000e-06,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00])





The solution may be now computed with a Lemke solver:

info = Numerics.lcp_lexicolemke(lcp, z, w, SO)





The info output is an integer. For all Numerics solvers, 0 means a successfull resolution. z and w now contain
a correct solution for the asked precision:

>>> z
array([ 1.33333333,  2.33333333])
>>> w
array([ 0.,  0.])





We may then compute the error:

d = Numerics.lcp_compute_error(lcp, z, w, 1e-6)
[ ... ]








LCP API







          

      

      

    

  

    
      
          
            
  
MCP


Usage




MCP API







          

      

      

    

  

    
      
          
            
  
MLCP


Usage




MLCP API







          

      

      

    

  

    
      
          
            
  
VI


Usage




VI API







          

      

      

    

  

    
      
          
            
  
Modelisation


Usage :


Example of the modelisation of a bouncing ball:

A ball bouncing on the ground may be defined as a linear Lagrangian time
invariant dynamical system with one degree of freedom.


	where:

	
	 is the state vector. Here, we have  as the only required coordinate
corresponds to the height of the center of the ball.


	 is the time invariant mass matrix. In this example  is a 1 x 1 matrix.


	 contains the external forces. Here, the gravity is applied.


	 is the reaction force due to the nonsmooth interaction with the floor.








We first import the needed classes from siconos.kernel module:



	LagrangianLinearTIDS, for a Linear Lagrangian Time Invariant Dynamical System object.


	LagrangianLinearTIR, for a Linear Lagrangian Time Invariant Relation object.


	NewtonImpactNSL, for a Newton Impact NonSmooth Law object.


	Interaction, to build an object that glues the relation and the nonsmooth law.


	Model, to build an object that gathers all the modeling and simulation objects.







To build a LagrangianLinearTIDS object, we have to give an initial
position vector, an initial velocity vector and the constant mass
matrix of the object.

The position and velocity are both vectors of size 1. The mass
matrix is defined as a 1 x 1 matrix.

The gravity is expressed in the coordinates chosen for the ball. It is then
applied as a constant external force.

The ball is constrained to lie above the floor. The relation between
the state space and the constraint space is a linear mapping  where  denotes the constraint vector and 
denotes the state vector.  is a 1 x 1 matrix:


We build an object for this relation with the LagrangianLinearTIR class:

The “above floor” constraint is unilateral and defined by  and a relation between velocities before and after impact. Let
 denotes the time instant before impact and  denotes
time instant after impact. Then if we add to the unilateral constraint a linear
relation between the velocities , we define a Newton impact nonsmooth law:

The relation and the nonsmooth law are tied together in an Interaction
object:

We finally build a Model object to gather the dynamical systems we
have defined (here just the ball) and link the interactions to them.




Example of the modelisation of a diodes bridge:

This is an example of an electrical circuit involving:



	a linear dynamical system consisting of an LC oscillator (1 µF ,
10 mH)


	a non smooth system (a 1000 Ohm resistor supplied through a 4
diodes bridge) in parallel with the oscillator







[image: figures/electronics/DiodeBridge/SchemaDiodeBridge.*]
Expected behavior:

The initial state ( V , ) of the oscillator provides
an initial energy. The period is  ms.

The non smooth system is a full wave rectifier: each phase (positive
and negative) of the oscillation allows current to flow through the
resistor in a constant direction, resulting in an energy loss: the
oscillation damps.


	State variables :

	
	the voltage across the capacitor (or inductor)


	the current through the inductor








Since there is only one dynamical system, the interaction is defined
by :



	complementarity laws between diodes current and voltage. Depending
on the diode position in the bridge,  stands for the reverse
voltage across the diode or for the diode current (see figure in
the template file)


	a linear time invariant relation between the state variables and 
and  (derived from Kirchhoff laws)







The oscillator is a time-invariant linear dynamical system, and using
the Kirchhoff current and voltage laws and branch constitutive
equations, its dynamics is written as:

where , ,  and 

We first import the needed classes for the construction of the model:

We define the model parameters:

A FirstOrderLinearDS object is built with the initial state and the linear
operator :

The linear relations between voltage and current given by:

, where ,   and 

are encoded as a FirstOrderLinearTIR object:

The behavior of each diode of the bridge, supposed to be ideal,
may be described with a complementarity condition between current and
reverse voltage (variables (, ) ). Depending on the
diode position in the bridge, y stands for the reverse voltage across
the diode or for the diode current. Then, the complementarity
conditions, results of the ideal diodes characteristics are given
by:



These conditions are defined with a ComplementarityConditionNSL object of size 4:

Then the relation and the nonsmooth law are tied in an Interaction object:

Finally a Model object is built :






Modelisation API







          

      

      

    

  

    
      
          
            
  
Simulation


Usage : example of the simulation of the bouncing ball

After the definition of a model for a simple bouncing ball
(Usage :) we are going to run a simulation with a
Moreau-Jean time stepping scheme (see http://siconos.gforge.inria.fr/UsersGuide/docSimuMoreauTS.html)

We first import the needed classes:

Prior to the construction of a time stepping scheme, we define a time
discretization by the construction of a TimeDiscretisation object. We
provide the starting time  and a fixed time step
:

A time stepping simulation object is built with the time discretization:

We have to provide to the time stepping scheme an one-step
integrator. We choose a Moreau-Jean integrator for which we have to
give the value of the  parameter:

Then, we attach the previously defined dynamical system to the integrator, which also adds the integrator to the simulation and prepares required work vectors:

In the Moreau-Jean time-stepping scheme, the unilateral constraints, after
being reformulated at the velocity level, lead at each timestep to nonsmooth
optimization problems. In our case, it is a linear complementarity problem
(LCP):

The default solver for an LCP is Lemke. As the one step integrator
object, it needs to be attached to the simulation:

At this stage, the simulation object does not know the interactions we have
defined for the dynamical systems. An initialization phase remains to be done:

The simulation is now ready for execution.

The simulation object provides methods in order to do the computation at each timestep:



	simulation.hasNextEvent() to check if some computation remains to be done.


	simulation.computeOneStep() to perform the computation at the current timestep.


	simulation.nextStep() to increment the current timestep.







The following loop takes care of running the simulation:


Example of the simulation of a diodes bridge:

The diodes bridge model is given in the Modelisation section :
Example of the modelisation of a diodes bridge:

The same classes as for the simulation of the bouncing ball are
imported:

And the time stepping simulation object built with a time discretization
object and the one-step integrator object are the same:

The diodes bridge dynamical system built in the modelisation section is
attached to the integrator which is attached to the simulation:

At each time step, the Moreau-Jean time stepping scheme needs a linear
complementarity problem to be solved. The LCP object is attached to
the simulation.

The simulation is initialized with the modelisation part:

It is now ready for execution.

We may set some pointers on interesting values like this:

Then, the execution loop is similar to the one of the bouncing ball:






Simulation API







          

      

      

    

  

    
      
          
            
  
bodies


Usage




bodies API







          

      

      

    

  

    
      
          
            
  
joints


Usage




joints API







          

      

      

    

  

    
      
          
            
  
occ


Usage




occ API







          

      

      

    

  

    
      
          
            
  
tools


Usage




tools API







          

      

      

    

  

    
      
          
            
  
C++ Refresher

C++ is the basic language of Siconos input files, thus you need at least a basic knowledge of C++.
This topic is covered by many books or tutorials, try for example :cite:`eckel_cpp`.
However, you can find in this first section the main C++ commands you need to know to write a first input file.

This page presents some basic commands and things you need to know to write a first C++ driver for your simulation.


Note: In recent versions it is possible to design complete Siconos
simulations using the Python programming language.  If you are
using the Python interface, most of this document can be ignored.
However, the Python interface uses the same class names.  See the
Python API reference.





Building/destroying and using objects

To describe your problem, you will mainly need to build pointers to objects.
Siconos use smart pointers so you do not have to bother with deletion.
The namespace SP enclose typedefs of all Siconos classes as smart pointers.

So to build an object of class CHILD derived from base class BASE, the syntax will be:

SP::BASE my_object_name(new CHILD(some args ...)





For example, suppose you want to build a LagrangianDS, which belongs
to the base class DynamicalSystem, then do:

SP::DynamicalSystem nameOfMyDS(new LagrangianDS(someParameters));





new call will reserve memory and build the object.

For each object, different types of constructors may be available. For an
exhaustive list see siconos_api_reference.




Members/Methods access

The access to the methods of the objects is done thanks to “*” or “->”:

nameOfMyDS->getType(); // return the type of the DynamicalSystem
(*nameOfMyDS).getType(); // Same thing.








Matrices and vectors handling

The basic classes available in the platform to deal with vectors and matrices are:


	:doxysiconos:`SiconosVector` : vector of double, can be dense or sparse.


	:doxysiconos:`BlockVector` : vector of :doxysiconos:`SiconosVector`


	:doxysiconos:`SimpleMatrix` : matrix of double, can be dense, sparse, triangular, banded, symmetric, zero or identity.


	:doxysiconos:`BlockMatrix` : matrix of :doxysiconos:`SimpleMatrix`




All these objects are just an interface to Boost Ublas library [http://www.boost.org/libs/numeric/ublas/doc/index.htm] vector and matrix.

Notice that BlockVector or BlockMatrix are no more that a collection of pointers to SiconosVector or SimpleMatrix.
Then in most cases, to build such an object, you just need to insert some existing objects.
The usual ways of construction are described below.

# build a dense vector of 4 elements
SP::SiconosVector v1(new SimpleVector(4));

# build a sparse vector of size 4
SP::SiconosVector vsparse(new SimpleVector(4, Siconos::SPARSE)

# build a block vector, which contains 3 dense blocks of size 5
SP::BlockVector vblock(new BlockVector(3, 5));

# build a block vector, which contains 2 sparse
SP::SiconosVector v2(new SiconosVector(4, Siconos::SPARSE)
SP::SiconosVector v3(new SiconosVector(7, Siconos::SPARSE)
SP::BlockVector vblock(new BlockVector(v2, v3));

int row = 3, col = 3;
// row X col Dense matrix:
SP::SiconosMatrix m(new SimpleMatrix(row,col));
// row X col matrix, all elements initialized with a scalar value:
double a = 4.4;
SP::SiconosMatrix m(new SimpleMatrix(row,col,a));
// row X row Symmetric matrix:
SP::SiconosMatrix m(new SimpleMatrix(row,row, Siconos::SYMMETRIC));
// Read from a file
SP::SiconosMatrix m2(new SimpleMatrix("mat.dat",1)); // 1: ascii, 0:binary
// Build an empty vector and insert some existing vectors.
SP::BlockVector V0(new BlockVector());
// Pointer insertion:
V0->insertPtr(v1);
// V0 has now one block equal to v1.
// warning: because of pointer equality,
// v1 and (*V0)[0] represent the same object
// and thus have the same memory location.
// Copy of an existing vector:
V0->insert(*v2);
// A new block has been created in V0
// and v2 has been copied into this block.
// Thus v2 and (*V0)[1] contain the same
// elements but are two different objects.





Note that a BlockVector can also contain some other BlockVector:

SP::BlockVector V1(new BlockVector());
V1->insertPtr(V0);
V1->insertPtr(v1);





V1 has now two blocks: the first one is a block of two blocks and the second is equal to v1.

// m1 ... m4 some SP::SiconosMatrix
SP::SiconosMatrix M(new BlockMatrix(m1,m2,m3,m4));
// M is a 2X2 blocks matrix
// (first row: m1, m2, second: m3, m4).





Keywords for constructors, in Siconos namespace: DENSE (default), TRIANGULAR, SYMMETRIC, SPARSE, BANDED, ZERO, IDENTITY.

Check the complete list of available constructors in reference documentation of each class.


Read/write vectors and matrices from/to file

This is done using :doxysiconos:`ioVector` and :doxysiconos:`ioMatrix` classes.

// Read/write vector/matrix from/to file
// v is a vector, m a matrix
ioVector myOutput ("MyData","ascii");
myOutput.read(v); // read v from file MyData
ioMatrix myMat("outMat","ascii");
myMat.write(m); // Write m in file outMat





Input/Ouput Files format:

On the first line, the dimensions, with space as separator. Then the data.

Example, for a 2-rows, 3-columns matrix:

2 3
1 2 3
4 5 6





However, if you give as a second argument to write function “noDim”, the first line with dimensions will not be written.




Methods and operations on matrices and vectors

Important note: in many of the operators described below, a boolean argument “init” can be set. If equal to true (default value) then the operator used “=” and if set to
false, “+=”.

v->size() // return the size of the vector
m->size(0); // number of rows in the matrix
m->size(1), // number of columns
m->resize(a,b); // resize m, available also for vectors

// To compute C = A*B
prod(A,B,C,true);
// or
prod(A,B,C);

// To compute C += A*B
prod(A,B,C,false);

//Single elements access or assignment: operator "()" or \e get/setValue functions.
SP::SiconosVector v(new SimpleVector(3)); // v = [0 0 0]
SimpleVector w(4);                    // w = [0 0 0 0]
(*v)(0) = 4;                          // v = [4 0 0]
// equivalent to:
v->setValue(0,4);
w(1) = 2;
w(2) = (*v)(0);                               // w = [0 2 4 0]
// equivalent to:
w.setValue( 2,v->getValue(0) );

SP::SiconosMatrix M(new SimpleMatrix(3,3)); // M = [ 0 0 0 ]
                                            //     [ 0 0 0 ]
                                            //     [ 0 0 0 ]
SimpleMatrix P(1,2);                        // P = [ 0 0 ]

(*M)(1,2) = 2;
P(0,1) = 12;                            // P = [ 0 12.0 ]
M->setValue(2,0,3.6);                   // M = [  0  0  0  ]
                                        //     [  0  0 2.0 ]
                                        //     [ 3.6 0  0  ]

cout << P.getValue(0,1); // display 12.0





Note: for sparse matrices, assignment with operator “()” fails. It is then necessary to use setValue function.

SP::SiconosMatrix A(new SimpleMatrix(10,10,SPARSE));
(*A)(0,0) = 12; // WRONG
A->setValue(0,0,12); // OK





For BlockVector: “()” and get/setValue functions have the same action as for SimpleVectors:

// We suppose that v1 and v2 are two pointers to SimpleVector of size 3 and 4.
SP::SiconosVector vB(new BlockVector(v1,v2)); // vB = [ [1 2 3] [4 5 6 7] ]
(*vB)(4) = 12;                                      // vB = [ [1 2 3] [4 12 6 7] ]
vB->setValue(6,8.6);                        // vB = [ [1 2 3] [4 12 6 8.6] ]
// Warning: the given input for position is an "absolute" one, not a block position.





Remark: get/setValue functions are equivalent to “()” operator but mainly useful in Siconos-Python, since in that case operators can not be overloaded and thus
“()” is not available. The same remark applies for “[ ]” get/setVector and in a general way for all operators overloading.

// Set vector or matrix to zero or identity
x->zero();
A->zero();
A->eye();

// Assignment of vectors or matrices: "A = B" or "x = y"
// Operator =
// Ok if A and x have been built before.
A = B;
x = y;
// Remark: sizes must be consistents between A/B and x/y,
// else it results in a Siconos Exception.

// Else copy constructor: memory allocation and initialization with B or x
SP::SiconosMatrix A(new SimpleMatrix(*B));
SP::SiconosVector x(new SimpleVector(*y));

// Addition of matrices or vectors

// add "in place": A = A+B  or x = x+y
A += B;
x += y;

C = A+B;
add(A,B,C);
A -= B;
C = A-B;
sub(A,B,C);

// Multiplication by a scalar:
A *=a;
B = a*A;
scal(a,A,B);
A /=a;
x /=a;
B = A/a;
scal(1.0/a,A,B);
// matrices product
C = A*B;
prod(A,B,C); // Based on atlas gemm for Dense matrices and ublas::prod for others.
             // C and A or B can be the same matrices (ie have common memory),
             // but that will slow down the operation.
gemm(A,B,C); // Only for denses matrices.

// It is also possible to compute product of sub-blocks of matrices or vectors:
// Declare A, x, y ...
//
std::vector<unsigned int> coord;
// Set coord values ...
bool init = false;
subprod(A,x,y,coord,init);





Coord vector is equal to [r0A, r1A,, c0A, c1A, r0x, r1x, r0y, r1y]. The sub-matrix A is the matrix between row positions
r0A and r1A, column position between c0A and c1A. Same thing for x and y with rix, riy.
Then subprod computes suby = subA*subx if init = true, or suby += subA*subx if init = false.

Matrix transpose:
// in place:
A->trans();
// B = At
B->trans(A);

// inner product: a = x.y
a = inner_prod(x,y);

// Matrix-vector product: \f$y=A*x\f$
y = prod(A,x);
prod(A,x,y);





To handle a specific block, use “[ ]” or getVector and getVectorPtr functions:

SP::SiconosVector v3(new SimpleVector(3));  // v3 = [0 0 0]
SP::SiconosVector v4(new SimpleVector(4));  // v4 = [0 0 0 0]
// get and copy a block:
*v3 = *(*vB[0]);                         // v3 = v1 = [1 2 3]
// Equivalent to
*v3 = *vB->getVectorPtr(0);

// get and copy pointer to block:
v4 = vB->getVectorPtr(1);                // v4 = v2 = [4 12 6 8.6]
                                         // AND pointer equality
                                         // between v4, vB[1] and v2
// Equivalent to:
v4 = (*vB)[1];                                   // v4 = v2 = [4 12 6 8.6].

// Assignment:
SP::SiconosVector v5(new SimpleVector(3));  // v5 = [0 0 0]

*(*vB)[0] = *v5; //  vB = [ [0 0 0] [4 5 6 7] ]
                 //  AND v1 = [0 0 0] because of pointer link between vB[0] and v1.
// Equivalent to:
vB->setVector(0,*v5);

(*v5)(1) = 12;
vB->setVectorPtr(0,v5); // vB = [ [0 0 0] [0 12 0] ]
// Pointer equality between v5 and vB[0].
// The pointer link between vB[0] and v1 has been canceled.

// Warning: when using setVectorPtr(i,w),
// the vector w must be of the same size as the block[i] of v.








About efficiency

As you can see above, for most functionality, two solutions are available: either an overloaded operator or a function without any return value.
For example in the case of matrix addition:

C = A + B;
// or
add(A,B,C);





In a general way, if you need efficiency, always prefer functions to overloaded operators.
The first solution is just there to give a more pleasant and readable, way of writing operations.

Try also to use pointers to objects to avoid temporary and time-consuming copies.









          

      

      

    

  

    
      
          
            
  
Getting Started

This manual aims at giving user a short overview of the software functionnalities and to provide some guidelines for your first steps with nonsmooth systems
simulation with Siconos.

However, this manual does not give a full description of all the Siconos concepts, classes, functions and so on.
For this, check directly User guide, siconos_api_reference or Python API reference, depending on the interface you choose.
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Modeling Principle

A Non Smooth Dynamical System is mainly a set of Dynamical Systems that may interact together, through what we call some Non Smooth Interactions.

The figure below summarizes the modeling process inside Siconos:

[image: figures/modelingPrinciple.*]




          

      

      

    

  

    
      
          
            
  
Running a simulation


Basics

At this step, you must have :


	installed properly siconos as explained in Installation guide


	created a directory for your simulation,


	written in this directory a ‘driver’ file, either in C++ or in python, as presented in Siconos tutorials or in one of the numerous examples of Examples Manual




Then, simply use siconos script on you driver (driver.cpp or driver.py):

siconos driver.cpp





Reminder: if siconos_install_path is not a standard path of your system, you may need to set some environment variables, mainly:



	append siconos_install_path/bin to PATH










Plugins mechanism

Some classes (mainly for dynamical systems and relations description), proposed a plugin (callback) mechanism, to allow user to set its own function to compute some
specific operators. This is detailed in User-defined plugins.

A ‘plugin’ is a dynamic library, generated from c++ source file, providing a set of functions that could be dynamically called by siconos objects.

The rules are :


	Siconos will consider any directory named XXXPluginXXX (XXX being whatever you want) or ‘plugins’ as a plugin directory


	for each plugin directory, siconos will create a library named XXXPluginXXX.ext (ext depends on your system) from all sources files in this directory




See for instance Mechanics/BouncingBall where external forces are defined with a plugin.




Extra source files

If needed, some user-defined source files can be taken into account. This may be useful to define some new classes, derived from standard siconos classes
(see for instance example Biology/StepSystem), to interface siconos with an other software and so on.
Anyway, to do this, just run:

siconos --src_dir=path_to_extra_src YourDriver.cpp/.py





where path_to_extra_src is the directory where extra source files are saved.
Notice that by default, siconos will always check for additional sources in “src” dir of the current directory.







          

      

      

    

  

    
      
          
            
  
Siconos tutorials

Check the Examples Manual and examples marked as tutorial …



	Tutorial: A 4-diodes bridge wave rectifier
	Preamble

	Siconos driver file

	Building a nonsmooth dynamical system
	Modeling the dynamics

	Modeling the interactions





	Describing the simulation of the nonsmooth dynamical system

	Leading the Simulation Process





	Tutorial : a column of three beads
	Building the Non-Smooth Dynamical System

	The Simulation
	Time-Stepping scheme

	Event-Driven algorithm





	Simulation Process
	Time-Stepping

	Event-Driven





	Results













          

      

      

    

  

    
      
          
            
  
C++ template for siconos driver

 // Header file
 #include "SiconosKernel.h"
 using namespace std;
 // main program
 int main(int argc, char* argv[])
 {
 // == Start timer ==
 boost::timer time;
 time.restart();
 // Exception handling
 try
 {
  // == User-defined parameters ==

  // ================= Creation of the model =======================

  // == Creation of the NonSmoothDynamicalSystem ==
  // -- DynamicalSystem(s) --
  // -- Interaction --
  // - Relations -
  // - NonSmoothLaw -
  // -- NonSmoothDynamicalSystem --
  // -- Model --
  // == Creation of the Simulation ==
  // -- TimeDiscretisation --
  // -- Simulation (time stepping or event-driven)
  // -- OneStepIntegrator --
  // -- OneStepNSProblem --
  // ================================= Computation =================================

  // --- Initialisation of the simulation ---

  // --- Time loop ---
}

// == Catch exceptions ==
catch(SiconosException e)
  {cout << e.report() << endl;}
catch(...)
  {cout << "Exception caught in mySample.cpp" << endl;}

// == get elapsed time ==
cout << "Computation Time " << time.elapsed()  << endl;
}









          

      

      

    

  

    
      
          
            
  
Examples Manual

This document is a collection of some examples of modelisation and simulation of nonsmooth systems with Siconos.
ALl of them are distributed with siconos package and are the results of several contributions (which means that depending on each author(s) the documentation
may be more or less detailed …)

Click on one of the images below to find details about the system and its simulation or check in the table of contents at the bottom of this page to find
an example that fits with your interests.

You may also view the directory of all current examples [https://github.com/siconos/siconos/tree/master/examples].


Gallery


[image: figures/mechanics/BouncingBall/BouncingBall.*]
[image: figures/electronics/CircuitRLCD/SchemaCircuitRLCD.*]
[image: figures/mechanics/Woodpecker/woodpeckerphoto.png]
 [https://github.com/siconos/siconos/blob/master/examples/Mechanics/Woodpecker/WoodPecker.cpp][image: figures/electronics/DiodeBridge/SchemaDiodeBridge.*]
[image: figures/mechanics/MultiBeads/BeadsColumn.*]
[image: figures/control/Two-linkManipulator/two-linkManipulatorResults2.*]
[image: figures/electronics/PowerConverter/PRC_fig2.*]
 [https://github.com/siconos/siconos/blob/master/examples/Electronics/PowerConverter/PRC.cpp][image: figures/mechanics/Billiard/Billiard.*]
[image: figures/control/ObserverLCS/ObserverLCS.*]
 [https://github.com/siconos/siconos/blob/master/examples/Control/ObserverLCS/ObserverLCS.cpp][image: figures/mechanics/slider_crank/slider_crank.*]
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Control
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Two-link manipulator

Authors: Bernard Brogliato, Irinel-Constantin Morarescu.

Tracking control of the trajectory described by the end point of a two-link planar manipulator

Keywords: :doxysiconos:`LagrangianLinearTIDS`, :doxysiconos:`LagrangianScleronomousR`, :doxysiconos:`NewtonImpactNSL`, :doxysiconos:`TimeStepping`, :doxysiconos:`EulerMoreauOSI`, :doxysiconos:`LCP`

Files: Control/Two-linkManipulator/Two-linkManipulator.cpp, Control/Two-linkMultiConstraints/Two-linkMulticonstrManip.cpp


Two-link planar manipulator, general framework

The model belongs to the class of complementary Lagrangian systems subject to frictionless unilateral constraints whose dynamics may be expressed as:

where


	 is the vector of generalized coordinates,


	 is the positive definite inertia matrix,


	 represents the distance to the constraints,


	 is the the matrix containing Coriolis and centripetal forces,


	 contains conservative forces,


	 are the Lagrangian multipliers associated to the constraints,


	 is the vector of generalized torque inputs.




For the sake of completeness we precise that  denotes the Euclidean gradient  where  represents the vector of partial derivatives of  with respect to the components of . We assume that the functions  are continuously differentiable and that  for all impact times . It is worth to precise here that for a given function  its derivative with respect to the time  will be denoted by .




Dynamics Equation based on Lagrangian formulation

Let us introduce the following notations:


	 - the joint angle of the joint ,


	 - the mass of link ,


	 - the moment of inertia of link  about the axis that passes through the center of mass and is parallel to the  axis,


	 - the length of link ,


	 - the gravitational acceleration.




[image: figures/control/Two-linkManipulator/planar_manipulator.*]
In order to simplify the presentation we assume that the center of mass of each link is right at the middle of the link. We will also assume that the gravitational force acts in the negative direction of the  axis.

Let us choose  as the generalized coordinates and denote  the kinetic energy,  the potential energy and  the Lagrangian function. Using the notations above and taking into account the assumption that we have made, the potential and the kinetic energy of the system can be expressed as follows:

Substituting  and  in the formula of  the dynamics equation of the two-links manipulator:

can be rewritten as

where 
have the same meaning as in (general dynamics) and they are explicitly given by:




Constrained problem formulation


General Consideration

We are interested on the problem of control of the trajectory described by the end point of the manipulator’s second link. The constraint surface corresponds to the ground (i.e. ). Obviously the associated admissible domain is . In order to apply the previous theoretical considerations we must consider a coordinates transformation. Entering into details, if  are the Cartesian coordinates of this point, we will consider the generalized coordinates

The coordinates transformation is simply given by

and the corresponding Jacobian matrix can be easily derived as

We call a singular configurations for the system above as those for which the end-effector velocities in a certain direction can not be realized by any finite joint velocity.

Without entering into details, from the mathematical point of view, singular configurations can be characterized using the Jacobian matrix. In the case of the two-link manipulator the singular configurations are given by:  or  (see figure below}, the configurations A and B do not allow a velocity in the direction of the origin (or the opposite) realized by finite joint velocities).

[image: figures/control/Two-linkManipulator/Singular.*]
We consider only one unilateral constraint for the system associated to the end point of the manipulator’s second link. Therefore, we do not take into account the case when some other parts of the manipulator touch the ground. Let us consider that the system must accomplish a cyclic task consisting of tracking a circle that violates the constraint. In order to track the trajectory the manipulator must follow the ground line from the point where the circle leave the admissible domain to the point where the circle re-enter in it. Thus, there exists a free-motion phase and a constraint motion phase during which a contact force is imposed.




Controller design

The controller used here consists of different low-level control laws for each phase of the system. More precisely, the controller can be expressed as

where . The new coordinates  are chosen such that . The tangent cone  is the space of admissible velocities on the boundary of .

The controller law used in the following is based on the fixed-parameter scheme presented by J.J. Slotine. First, let us introduce some notations:  where  is a scalar gain and  will be explicitly defined in the next section. Using the notations above the controller is given by

where  is a scalar gain,  and  is the desired contact force during constraint motion.




Desired trajectory

First of all we split the time axis into intervals  and  corresponding to specific phases of the system. Precisely,  corresponds to free-motion phases () and  corresponds to constrained-motion phases ( for some index ). Therefore, during the  phases no impact can occur. Between a free and a constrained phase the dynamical systems always passes into a transition phase  containing some impacts. Since the dynamics of the system does not change during the transition between a constrained and a free-motion phase, in time domain one gets the following typical task representation):

The sequence  will be referred as the cycle  of the system evolution.Consider the following notations:


	 is the first impact during the cycle ,


	 is the time corresponding to ,


	 is the accumulation point of the sequence  of the impact instants during the cycle  (obviously ),


	 is such that  and , where  is chosen by the designer in order to impose a closed-loop dynamics with impacts,


	 is the detachment instant, therefore .




It is noteworthy that  are state dependent whereas  and  are exogenous and imposed by the designer. On  we impose that  is twice differentiable and  decreases towards  on . For the sake of simplicity, in order to satisfy the previous requirements we define on  the signal  as a degree 3 polynomial function with limit conditions ( and ). Therefore,

with the coefficients given by:

The signal  is frozen during the transition phase:


	 on ,


	 is defined such that .




On  we set  and  as follows:

and on  we set

We note that  on .






The Formalization of the problem into the class of Lagrangian NSDS


Second order non linear Lagrangian dynamical systems

From the input of the physical data, we construct all of the terms which defined a Lagrangian NSDS. In our special case:


	 is given in the previous sections,


	,


	 is identically zero,


	 is used to introduce the control law .







Relations


	The unilateral constraint requires that :





	Physical consideration impose 


	In order to avoid the singular cases we impose 







Non Smooth laws

There exists just one unilateral constraint such that :

The Newton impact law at impact is given by :






Exploitation of the results

We present here just some basic results concerning the tracking of the trajectory. More precisely, we present the variation of  in time and the path of the end point of the manipulator’s second link in -plane. The variation of other quantities may be also obtained by the user.

[image: figures/control/Two-linkManipulator/two-linkManipulatorResults1.*]
[image: figures/control/Two-linkManipulator/two-linkManipulatorResults2.*]






          

      

      

    

  

    
      
          
            
  
Biology



	Gene regulatory networks









          

      

      

    

  

    
      
          
            
  
Gene regulatory networks

This example describes the simulation of a gene regulatory network in Siconos.
For a complete description of the problem see :cite:`Acary.DeJong.Brogliatio2014`

A piecewise linear model is used as a model for the gene regulatory network, in which the variables denote concentrations of gene products.

We consider a two genes system with the following dynamics:

with the step functions:

 are thresholds that control inhibition/activation of the expression of a gene.





          

      

      

    

  

    
      
          
            
  
Tutorial : a column of three beads

This tutorial deals with a column of beads, subjected to the
gravity. It then introduces Lagrangian Linear systems with Lagrangian
Linear Relations and Newton impact law.


Building the Non-Smooth Dynamical System

As described in the figure below, we consider a ball of mass  and radius , described by 3 generalized coordinates 
The ball is subjected to the gravity . The system is also constituted by a rigid plane, defined by its position  with respect
to the axis Oz. We assume that the position of the plane is fixed.


[image: figures/mechanics/BouncingBall/BouncingBall.*]
fig 1: Coordinate system



The equation of motion of the ball is given by

with


	 the inertia term, a  matrix.


	 the force due to the non-smooth law, ie the reaction at impact.


	 the given external force.




That fits with Lagrangian, Linear and Time-Invariant coefficient Dynamical System, represented by LagrangianLinearTIDS class (see ref dsInSiconos).

Next, we will suppose that we have a column of “dsNumber” balls like the one above (mass and radius may be different, and if necessary, variables will be indexed by , the number of the ball). Each ball is governed by a linear system like the one written for a single ball and may be in contact with the balls above and below it.

Let us now start the writing of the input file. Like for the first tutorial, we create a new directory, multiBeads, and save the template given ref tutGCtemplate “here” as multiBeads.cpp.

We start by setting some parameters, like the number of balls, their initial positions and velocities and so on:

// User-defined main parameters
unsigned int dsNumber = 10;      // the number of dynamical systems
unsigned int nDof = 3;           // degrees of freedom for beads
double increment_position = 1;   // initial position increment from one DS to the following
double increment_velocity = 0;   // initial velocity increment from one DS to the following
double t0 = 0;                   // initial computation time
double T = 10;                   // final computation time
double h = 0.005;                // time step
double position_init = 10.5;     // initial position for lowest bead.
double velocity_init = 0.0;      // initial velocity for lowest bead.
double R = 0.1;                  // balls radius





Then, we define some initial conditions for the balls, and create the
corresponding Dynamical Systems, all of type Lagrangian, Linear and
Time Invariant.

All the systems are inserted in a container, a DynamicalSystemsSet,
named allDS.

From now on, to simplify writing, we suppose that all
balls have the same mass, , and the same radius, :

// -------------------------
// --- Dynamical systems ---
// -------------------------

// mass matrix, set to identity
SP::SiconosMatrix Mass = new SimpleMatrix(nDof,nDof);
Mass->eye();
(*Mass)(2,2) = 3.0/5*R*R;

// -- Initial positions and velocities --
// q0[i] and v0[i] correspond to position and velocity of ball i.
vector<SimpleVector *> q0;
vector<SimpleVector *> v0;
q0.resize(dsNumber,NULL);
v0.resize(dsNumber,NULL);

for (unsigned i = 0; i < dsNumber; ++i)
{
    // Memory allocation for q0[i] and v0[i]
    q0[i] = new SimpleVector(nDof);
    v0[i] = new SimpleVector(nDof);
    // set values
    (*(q0[i]))(0) = position_init;
    (*(v0[i]))(0) = velocity_init;
    // Create a new Lagrangian Linear Dynamical System, with q0] and v0[i] as initial conditions,
    // Mass as mass matrix and i as number of identification.
    // The system is then inserted in allDS.
    allDS.insert( new LagrangianLinearTIDS(i,nDof,*(q0[i]),*(v0[i]),*Mass));
    // Increment values for next system
    position_init+= increment_position;
    velocity_init+= increment_velocity;
}





Next, it is necessary to define the external forces, the gravity, applied on each ball. According to Dynamical Systems plug-in functions, a plug-in function is available for those forces. (For details on plug-in functions, see User-defined plugins). Its signature (the type of its arguments) is given in DefaultPlugin.cpp. So we copy it in a new file, say BeadsPlugin.cpp, and we define an extern function, gravity.:

const double m = 1; // bead mass
const double g = 9.81; // gravity
extern "C" void gravity(unsigned int sizeOfq, double time,    double * fExt, double *param)
{
    // set fExt components to 0
    for (unsigned int i = 0; i < sizeOfq; i++)
    fExt[i] = 0.0;
    // apply gravity
    fExt[0] = -m*g;
}





Warning


	gravity must be an extern “C” function, and code is C, not C++.


	the name of the plugin file, BeadsPlugin.cpp here, must be xxxPlugin.cpp, xxx being whatever you want.




Now we have to say “use gravity from BeadsPlugin.cpp to compute the external forces of my systems.”
This is done thanks to “setComputeFExtFunction” function, in multiBeads.cpp:

//
CheckInsertDS checkDS;
for (i=0;i<dsNumber;i++)
   {
     // Memory allocation for q0[i] and v0[i]
     q0[i] = new SimpleVector(nDof);
     v0[i] = new SimpleVector(nDof);
     // set values
     (*(q0[i]))(0) = position_init;
     (*(v0[i]))(0) = velocity_init;
     // Create and insert in allDS a new Lagrangian Linear Dynamical System ...
     checkDS = allDS.insert(new LagrangianLinearTIDS(i,nDof,*(q0[i]),*(v0[i]),*Mass));
     // Note that we now use a CheckInsertDS object: checkDS.first is
     // an iterator that points to the DS inserted above.
     //
     // Set the external forces for the last created system.
     (static_cast<LagrangianDS*>(*(checkDS.first)))->setComputeFExtFunction("BeadsPlugin.so", "gravity");
     // A cast is required, since allDS handles DynamicalSystem*,
     // not LagrangianLinearTIDS*.
     // Increment values for next system
     position_init+= increment_position;
     velocity_init+= increment_velocity;
   }





From this point, any call to the external forces of a system in allDS will result in a call to the function gravity defined in BeadsPlugin.cpp.

Remark:  and  are set inside the BeadsPlugin file
but it would also be possible, and maybe better, to pass them as
parameters in gravity function.
See ref doc_usingPlugin for details on that option.

Ok, now DynamicalSystems are clearly defined and all saved in allDS. Let’s turn our attention to Interactions. In the same way, they will be handled by a container, an InteractionsSet, named allInteractions. The potential interactions are the contacts between beads and the impact on the ground. Thus, for dsNumbers systems, there are dsNumbers-1 “bead-bead” Interactions plus one between the “bottom bead” and the floor.

We start with bead-floor Interaction: the ball at the bottom bounces on the rigid plane, introducing a constraint on the position of the ball, given by:
.
To define an Interaction, it is first necessary to set some relations between local variables at contact and the global coordinates.
Thus, as a local variables of the Interaction, we introduce  as the distance between the ball and the floor and  as the multiplier that corresponds to
the reaction at contact. Then the relation is written,

(next, we set h=0).


Finally we need to define a non-smooth law to define the behavior of the ball at impact.
The unilateral constraint is such that

completed with a Newton Impact law, for which we set the restitutive coefficient  to 0.9:

with  and  being post and pre-impact times.



The first Interaction can then be constructed:

// -------------------
// --- Interactions---
// -------------------
InteractionsSet allInteractions;
// The total number of Interactions
int interactionNumber = dsNumber;
// Interaction first bead and floor
// A set for the systems handles by the "current" Interaction
DynamicalSystemsSet dsConcerned;
// Only the "bottom" bead is concerned by this first Interaction,
// therefore DynamicalSystem number 0.
dsConcerned.insert(allDS.getDynamicalSystemPtr(0));
// -- Newton impact law --
double e = 0.9;
NonSmoothLaw * nslaw0 = new NewtonImpactNSL(e);
// Lagrangian Relation
unsigned int interactionSize = 1; // y vector size
SiconosMatrix *H = new SimpleMatrix(interactionSize,nDof);
(*H)(0,0) = 1.0;
SiconosVector *b = new SimpleVector(interactionSize);
(*b)(0) = -R;
Relation * relation0 = new LagrangianLinearR(*H,*b);
// Interaction
unsigned int num = 0 ; // an id number for the Interaction
Interaction * inter0 = new Interaction("bead-floor", dsConcerned,num,interactionSize, nslaw0, relation0);
allInteractions.insert(inter0);





In the same way, the potential contact between two balls introduces some new constraints:

, if ball  is on top of ball .

So if we consider the Interaction between ball  and ,  being the distance between two balls and  the multiplier, we get:

With the same non smooth law as for the first Interaction:

// A list of names for the Interactions
vector<string> id;
id.resize(interactionNumber-1);
CheckInsertInteraction checkInter;
// A vector that will handle all the relations
vector<Relation*> LLR(interactionNumber-1);
//
SiconosMatrix *H1 = new SimpleMatrix(1,2*nDof);
if (dsNumber>1)
{
    (*H1)(0,0) = -1.0;
    (*H1)(0,3) = 1.0;
    // Since Ri=Rj and h=0, we do not need to set b.
    Relation * relation = new LagrangianLinearR(*H1);
    for (i=1;(int)i<interactionNumber;i++)
    {
        // The systems handled by the current Interaction ...
        dsConcerned.clear();
        dsConcerned.insert(allDS.getDynamicalSystemPtr(i-1));
        dsConcerned.insert(allDS.getDynamicalSystemPtr(i));
        // The id: "i"
        ostringstream ostr;
        ostr << i;
        id[i-1]= ostr.str();
        // The relations
        LLR[i-1] = new LagrangianLinearR(*relation); // we use copy constructor to built all relations
        checkInter = allInteractions.insert( new Interaction(id[i-1], dsConcerned,i,interactionSize, nslaw0, LLR[i-1]));
    }
    delete relation;
}





Note that each Relation corresponds to one and only one Interaction (which is not the case of NonSmoothLaw); that’s why we need to built a new Relation LLR[i-1] for each Interaction.

Everything is now ready to build the NonSmoothDynamicalSystem and the related Model:

// --------------------------------
// --- NonSmoothDynamicalSystem ---
// --------------------------------
NonSmoothDynamicalSystem * nsds = new NonSmoothDynamicalSystem(allDS, allInteractions);
// -------------
// --- Model ---
// -------------
Model * multiBeads = new Model(t0,T);
multiBeads->setNonSmoothDynamicalSystemPtr(nsds); // set NonSmoothDynamicalSystem of this model








The Simulation


Time-Stepping scheme

As a first example, we will use a Moreau’s time-stepping scheme, where the non-smooth problem will be written as a LCP. The process is more or less the same as for the Diode Bridge case, so we won’t detail it. The only difference is that now, the OneStepIntegrator handles several DynamicalSystems:

string solverName = "Lemke";      // solver algorithm used for non-smooth problem
Simulation* s = new TimeStepping(multiBeads);
// -- Time discretisation --
TimeDiscretisation * t = new TimeDiscretisation(h,s);
// -- OneStepIntegrators --
double theta = 0.5000001;
OneStepIntegrator * OSI = new Moreau(allDS , theta ,s);
// That means that all systems in allDS have the same theta value.
// -- OneStepNsProblem --
OneStepNSProblem * osnspb = new LCP(s,"LCP",solverName,10001, 0.001);








Event-Driven algorithm

In that second part, an event-driven algorithm is used to solve the problem. Event-Driven Simulation principle is detailed in Event-Driven schemes.

The dynamics is decomposed in “modes”, time-intervalls where the dynamics is smooth and discrete events where the dynamics is non-smooth.

In the present case, non smooth events will corresponds to impacts between balls. Each time such an event is detected, a non-smooth problem is formalized and solved (as a LCP here) while between events, the systems are integrated thanks to Lsodar, ODE solver with roots-finding algorithm.

As for the Time-stepping, we first need to built the simulation and then its time-discretisation:

// The simulation belongs to Model multiBeads
EventDriven* s = new EventDriven(multiBeads);
TimeDiscretisation * t = new TimeDiscretisation(h,s);





Next step is the declaration of integrators for the dynamical systems.
The integrator will handle all the DynamicalSystems of the Model. During integration of the systems, Lsodar will search for roots of some equations (the constraints ie the Interactions of the NonSmoothDynamicalSystem). The required OSI type is Lsodar, applied to allDS:

OneStepIntegrator * OSI = new Lsodar(allDS,s);





Each time a root is found, a new NonSmoothEvent is created and it’s then necessary to write and solve a non-smooth problem. We won’t detail this here but just remember that this requires two LCP, one at “velocity” level, named impact, and another at “acceleration” level, named acceleration.
The whole event-driven algorithm for Lagrangian Systems is available here: Event Driven algorithm for Lagrangian systems:

OneStepNSProblem * impact = new LCP(s, "impact",solverName,101, 0.0001,"max",0.6);
OneStepNSProblem * acceleration = new LCP(s, "acceleration",solverName,101, 0.0001,"max",0.6);





The Model is now complete, we can start the simulation process.






Simulation Process


Time-Stepping

Once again, the process is the same as in the first tutorial and won’t be detailed.
Concerning the output, we save the position and velocity of all balls:

s->initialize();
int k = 0;
int N = t->getNSteps(); // Number of time steps
// Prepare output and save value for the initial time
unsigned int outputSize = dsNumber*2+1;
SimpleMatrix dataPlot(N+1,outputSize ); // Output data matrix
// time
dataPlot(k, 0) = multiBeads->getT0();
// Positions and velocities
i = 0; // Remember that DS are sorted in a growing order according to their number.
DSIterator it;
for(it = allDS.begin();it!=allDS.end();++it)
{
    dataPlot(k,(int)i*2+1) = static_cast<LagrangianLinearTIDS*>(*it)->getQ()(0);
    dataPlot(k,(int)i*2+2) = static_cast<LagrangianLinearTIDS*>(*it)->getVelocity()(0);
    i++;
}





Note that we use a “DSIterator”, which is simply a pointer to a set of DynamicalSystems; allDS.begin() is a pointer to the first object handled by allDS and allDS.end() a pointer “just after” the last object handled by allDS. The current pointed system is then *it (“content of the pointer”). Thus, in the loop above, we sweep through all the DynamicalSystems and get the corresponding  and .
A static_cast is also required since allDS contains DynamicalSystem whereas we need functions specific to LagrangianDS (getQ …).

Next, we write:

while(k < N)
{
    k++;
    // solve ...
    s->computeOneStep();
    dataPlot(k, 0) = s->getNextTime();
    //
    i = 0;
    for(it = allDS.begin();it!=allDS.end();++it)
    {
        dataPlot(k,(int)i*2+1) = static_cast<LagrangianLinearTIDS*>(*it)->getQ()(0);
        dataPlot(k,(int)i*2+2) = static_cast<LagrangianLinearTIDS*>(*it)->getVelocity()(0);
        i++;
        s->nextStep();
    }
}





and for output file saving:

ioMatrix io("result.dat", "ascii");
io.write(dataPlot,"noDim");








Event-Driven

The principle of an EventDriven simulation roughly consists in integration between some events with stops and special treatment at these events. Thus we introduce a specific object, the EventsManager, a kind of stack of events used to handle them, where they are saved in a chronological order. It belongs to the Simulation object and can be accessed with:

EventsManager * eventsManager = s->getEventsManagerPtr();





The manager is built during the ininitialization, which is still the first required step of any simulation process:

s->initialize();





Among other things, this initialization schedules time events from the TimeDiscretisation object into the manager. Each time step is saved as a TimeDiscretionEvent.

Then the simulation process consists in:
* check if there is a “future” event
* integrate the system until this future event is reached or until a non-smooth event is found
* schedule the possibly new event
* deal with the system at event (for example, in case of a non-smooth event, formalize and solve one or more LCP)
* next step

Once again this is only a summary and we encourage you to read Event-Driven schemes to get more details about the event-driven strategy.

The resulting code is:

// While there are some events in the manager ...
 while(eventsManager->hasNextEvent())
   {
     eventDriven->computeOneStep();
   }





Concerning output, we first save displacements and velocities at each time step:

while(eventsManager->hasNextEvent())
  {
    k++;
    eventDriven->advanceToEvent();

    eventDriven->processEvents();
    // Positions and velocities for user time steps
    i = 0; // Remember that DS are sorted in a growing order according to their number.
    DSIterator it;
    dataPlot(k, 0) = eventDriven->getStartingTime();
    for(it = allDS.begin();it!=allDS.end();++it)
      {
        dataPlot(k,(int)i*2+1) = static_cast<LagrangianLinearTIDS*>(*it)->getQ()(0);
        dataPlot(k,(int)i*2+2) = static_cast<LagrangianLinearTIDS*>(*it)->getVelocity()(0);
        i++;
      }
  }





But when a non-smooth event occurs, that may be interesting to get pre and post impact values.
In Siconos, the values saved in object are usually the last computed, thus in the present case, post-impact values.
The next-to-last values are saved in “memory” objects; we get them in case of “Non-Smooth event”:

while(eventsManager->hasNextEvent())
  {
    k++;
    eventDriven->advanceToEvent();

    eventDriven->processEvents();
    if(eventsManager->getStartingEventPtr()->getType() == "NonSmoothEvent")
      {
        i = 0; // Remember that DS are sorted in a growing order according to their number.
        DSIterator it;
        dataPlot(k, 0) = eventDriven->getStartingTime();
        for(it = allDS.begin();it!=allDS.end();++it)
          {
            dataPlot(k,(int)i*2+1) = (*static_cast<LagrangianLinearTIDS*>(*it)->getQMemoryPtr()->getSiconosVector(1))(0);
            dataPlot(k,(int)i*2+2) = (*static_cast<LagrangianLinearTIDS*>(*it)->getVelocityMemoryPtr()->getSiconosVector(1))(0);
            i++;
          }
        k++;
      }
    // Positions and velocities for user time steps
    i = 0; // Remember that DS are sorted in a growing order according to their number.
    DSIterator it;
    dataPlot(k, 0) = eventDriven->getStartingTime();
    for(it = allDS.begin();it!=allDS.end();++it)
      {
        dataPlot(k,(int)i*2+1) = static_cast<LagrangianLinearTIDS*>(*it)->getQ()(0);
        dataPlot(k,(int)i*2+2) = static_cast<LagrangianLinearTIDS*>(*it)->getVelocity()(0);
        i++;
      }
  }

// Output written in result.dat
ioMatrix io("result.dat", "ascii");
io.write(dataPlot,"noDim");





The simulation is now ready. The input file is completed with required headers and delete instructions at the end.
Check the following links to see the complete input files:


	BeadsColumnTS.cpp for the Time-Stepping version


	BeadsColumnED.cpp for the Event-Driven


	BeadsPlugin.cpp for the file that contains external plug-in









Results

You can now run in a terminal:

siconos multiBeadsTS.cpp





and then plot with for example gnuplot:

gnuplot -persist result.gp





result.gp being a command file (see example in mechanics/MultiBeadsColumn)

Results are given in fig 2, below:


[image: figures/mechanics/MultiBeads/MultiBeads.*]
fig 2: Result of MultiBeads simulation









          

      

      

    

  

    
      
          
            
  
Billiards example

To do.





          

      

      

    

  

    
      
          
            
  
Bouncing Ball

To do.

For now, please refer to the source code of this example, found here [https://github.com/siconos/siconos/blob/master/examples/Mechanics/BouncingBall/BouncingBallTS.cpp].
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Slider Crank

This is an example of a simple multibody system, developed in :cite:`FloresGlockerLeine` and shown on the figure below:

[image: figures/mechanics/slider_crank/slider_crank.*]
In siconos, this example is simulated in several different ways :


	examples/Mechanics/SliderCrank/SliderCrankMoreauJeanOSI.cpp


	examples/Mechanics/SliderCrank/SliderCrankD1MinusLinear.cpp


	examples/Mechanics/SliderCrank/SliderCrankD1MinusLinearVelocityLevel.cpp


	examples/Mechanics/SliderCrank/SliderCrankMoreauJeanCombinedProjectionOSI.cpp
* examples/Mechanics/SliderCrank/SliderCrankMoreauJeanDirectProjectionOSI.cpp


	examples/Mechanics/Mechanisms/SliderCrank/bodyref.py





Usage

siconos example_name.cpp





or, for python files using mechanisms toolbox:

cd examples/Mechanics/Mechanisms/
siconos -P siconos-mechanism.py .





and to plot the results, you can use for example:

gnuplot -p result.gp





This muste lead to Fig 11 (d) of the paper

The example is based on cad files located in examples/Mechanics/Mechanisms/SliderCrank/CAD

The option WITH_CLEARANCE_ON_RODE can be set to 1 to add clearance between the rode 1 and 2.

All variables names and parameters values are those from the paper cited above.







          

      

      

    

  

    
      
          
            
  
Collections of rigid bodies with Bullet based contact detection (Siconos/Mechanics)

Author: Maurice Bremond, Vincent Acary 2013–2016

You may refer to the source code of this set of  examples, found here [https://github.com/siconos/siconos/tree/master/examples/Mechanics/MechanicsIO/].


Description of the physical problems : rigid bodies collection with contact and Coulomb friction

In this set of examples (cubes.py, n_cubes.py, …), we model collections of rigid bodies
associated with shapes (primitive (sphere, cube capsule, etc), convex hull, mesh) that interact
with contact and friction (see fig-n_cubes).

The example use extensively the mechanics_io python code that enable to create and manage the geometrical
data and the results of the simulation in hdf5 file.

The results cab be viewed with the siconos_vview and the siconos_vexport python scripts

A brief description of examples is as follows :


	cube.py is  the simplest example with few cubes that fall down on a rigid fixed plane. The scene is built
using calls to mechanics_io methods such as


	addPrimitiveShape for creating a primitive shape

with Hdf5(mode='r+') as io:
  io.addPrimitiveShape('Ground', 'Box', (100, 100, .5))







	addConvexShape for creating a convex shape addPrimitiveShape, addNewtonImpactFrictionNSL)

with Hdf5(mode='r+') as io:
  io.addConvexShape('Cube_1', [
  (-1.0, 1.0, -1.0),
  (-1.0, -1.0, -1.0),
  (-1.0, -1.0, 1.0),
  (-1.0, 1.0, 1.0),
  (1.0, 1.0, 1.0),
  (1.0, 1.0, -1.0),
  (1.0, -1.0, -1.0),
  (1.0, -1.0, 1.0)])







	addObject for associating Newton Euler Dynamical System to a shape:

with Hdf5(mode='r+') as io:
  io.addObject('cube', [Contactor('Cube')], translation=[0, 0, 2],
  velocity=[10, 0, 0, 1, 1, 1],
  mass=1)









The computation is launched using the method run() with default arguments:

with Hdf5(mode='r+') as io:
  io.run(with_timer=False,
      time_stepping=None,
      space_filter=None,
      body_class=None,
      shape_class=None,
      face_class=None,
      edge_class=None,
      gravity_scale=1,
      t0=0,
      T=10,
      h=0.0005,
      multipoints_iterations=True,
      theta=0.50001,
      Newton_max_iter=20,
      set_external_forces=None,
      solver=Numerics.SICONOS_FRICTION_3D_NSGS,
      itermax=100000,
      tolerance=1e-8,
      numerics_verbose=False,
      output_frequency=None)







	n_cubes.py . This is an extension of cubes.py where it is possible to build a reactangular pile of cubes


	cube_scene.py, cube_simulation.py n_cubes_scene.py n_cubes_simulation.py . These examples are a different treatment of the same example
but the construction of the scene and the simulation are separated into differents. In that way, it is possible to produce a scene file
and then to perfoms several simulations. Furthermore, if the result of the simulation is stored in the hdf5 file, we restart from the last
state of the system to continue the simulation. it is alo possible to concatenate in time several simulations in that way.


	MultipleContactorsAndNSlaws.py . This  is an example where two shapes are fixed to the same mechanical system. It allows to build clusters and to get
some complex contact shapes.


	bar.py, bar_contact.py  This simple example provides one with a simple simulation where the performance of Lie integrator are important for long term
simulation of rotating bodie in a stable way. It allows also to test large inertia ratio in the solver.


	convexhull.py . This test shos how to build a collection of convexhull shapes


	PairWise_test_bullet.py . This test file performs the test of contacting pairs of various nature (primitive, convex hull). Meshes have to be added.


	chute.py. This example is a little more complex one where the a collection of polyhedra falls down into an hopper.










          

      

      

    

  

    
      
          
            
  
Simulation of an electrical oscillator supplying a resistor through a half-wave rectifier

Author: Pascal Denoyelle, September 22, 2005

You may refer to the source code of this example, found here [https://github.com/siconos/siconos/blob/master/examples/Electronics/CircuitRLCD/CircuitRLCD.cpp].

There is also a PDF version of this document, viewable online here [https://github.com/siconos/siconos/blob/master/examples/Electronics/CircuitRLCD/Template-CircuitRLCD.pdf].


Description of the physical problem : electrical oscillator with half-wave rectifier

In this sample, a LC oscillator initialized with a given voltage
across the capacitor and a null current through the inductor provides
the energy to a load resistance through a half-wave rectifier
consisting of an ideal diode (see fig 1: Electrical oscillator with half-wave rectifier).


[image: figures/electronics/CircuitRLCD/SchemaCircuitRLCD.*]
fig 1: Electrical oscillator with half-wave rectifier



Only the positive wave of the oscillating voltage across the LC is
provided to the resistor. The energy is dissipated in the resistor
resulting in a damped oscillation.




Definition of a general abstract class of NSDS : the linear time invariant complementarity system (LCS)

This type of non-smooth dynamical system consists of :


	a time invariant linear dynamical system (the oscillator). The state
variable of this system is denoted by .


	a non-smooth law describing the behaviour of the diode as a
complementarity condition between current and reverse voltage
(variables () )


	a linear time invariant relation between the state variable
 and the non-smooth law variables ()





Dynamical system and Boundary conditions

Remark:


In a more general setting, the system’s evolution would be
described by a DAE :

with  matrices constant over time (time invariant
system),  source terms functions of time and
, a term coming from the non-smooth law variables :
 with  constant over
time.  We will consider here the case of an ordinary differential
equation :

and an initial value problem for which the boundary conditions are
.







Relation between constrained variables and state variables

In the linear time invariant framework, the non-smooth law acts on the
linear dynamical system evolution through the variable . Reciprocally, the state variable  acts on the
non-smooth law through the relation  with  constant over
time.




Definition of the Non Smooth Law between constrained variables

It is a complementarity condition between y and  :
. This corresponds to the
behaviour of the rectifying diode, as described in
Non Smooth laws.




The formalization of the electrical oscillator with half-wave rectifier into the LCS

The equations come from the following physical laws :


	the Kirchhoff current law (KCL) establishes that the sum of the
currents arriving at a node is zero,


	the Kirchhoff voltage law (KVL) establishes that the sum of the
voltage drops in a loop is zero,


	the branch constitutive equations define the relation between the
current through a bipolar device and the voltage across it




Refering to fig 1: Electrical oscillator with half-wave rectifier, the Kirchhoff laws could be written as:

while the branch constitutive equations for linear devices are:

and last the “branch constitutive equation” of the ideal diode that is
no more an equation but instead a complementarity condition:

This is illustrated in fig 2: Non-smooth and smooth characteristics of a diode, where the left-hand
sketch displays the ideal diode characteristic and the right-hand
sketch displays the usual exponential characteristic as stated by
Shockley’s law.


[image: figures/electronics/CircuitRLCD/diode-caract.*]
fig 2: Non-smooth and smooth characteristics of a diode






Dynamical equation

After rearranging the previous equations, we obtain:

that fits in the frame of ref{sec-def-NSDS} with

and




Relations

We recall that the  equation is expressed with

from the dynamical equation (Dynamical equation).

Rearranging the initial set of equations yields:

as the second equation of the linear time invariant relation with




Non Smooth laws

There is just the complementarity condition resulting from the ideal diode characteristic:






Description of the numerical simulation: the Moreau’s time-stepping scheme


Time discretization of the dynamical system

The integration of the ODE over a time step  of length  is:

The left-hand term is .

Right-hand terms are approximated this way:


	 is approximated using a
-method



	since the second integral comes from independent sources, it can be
evaluated with whatever quadrature method, for instance a
-method



	the third integral is approximated like in an implicit Euler integration





By replacing the accurate solution  by the approximated value , we get:

Assuming that  is invertible, matrix 
is defined as . We get then:

An intermediate variable  related to the smooth part of the system is defined as:

Thus the calculus of  becomes:




Time discretization of the relations

It comes straightforwardly:




Time discretization of the non-smooth law

It comes straightforwardly:




Summary of the time discretized equations

These equations are summarized assuming that there is no source term
and simplified relations as for the electrical oscillator with
half-wave rectifier.




Numerical simulation

The integration algorithm with a fixed step is described here :


Algorthm 1: Integration of the electrical oscillator with half-wave
rectifier through a fixed Moreau time stepping scheme

Require: 

Require: Time parameters  and  for the integration

Require: Initial value of inductor voltage 

Require: Optional, initial value  of inductor current  (default: 0)



// Dynamical system specification



// Relation specification







// Construction of time independent operators

Require:  invertible



// Non-smooth dynamical system integration

for  to  do

end for









Comparison with numerical results coming from SPICE models and algorithms

We have used the SMASH simulator from Dolphin to perform a simulation
of this circuit with a smooth model of the diode as given by
Shockley’s law , with a classical one step solver (Newton-Raphson) and
a choice between backward-Euler and trapezoidal integrators.


Characteristic of the diode in the SPICE model

fig 3: Diodes characteristics from SPICE model (N=0.25, N=1) depicts the static  characteristic
of two diodes with default SPICE parameters and two values for the
emission coefficient : 1.0 (standard diode) and 0.25 (stiff
diode).


[image: figures/electronics/CircuitRLCD/caracdiode.*]
fig 3: Diodes characteristics from SPICE model 



The stiff diode is close to an ideal one with a threshold of 0.2 V.




Simulation results

fig 4: SMASH and SICONOS simulation results with backward Euler
integration, 10 μs time step displays a comparison of the
SMASH and SICONOS results with a backward Euler integration and a
fixed time step of 10 μs. A stiff diode model was used in SMASH
simulations.  For fig 5: SMASH and SICONOS simulation results with trapezoidal
integration, 10 μs time step, a
trapezoidal integrator was used, yielding a better accuracy.  One can
notice that the results from both simulators are very close. The
slight differences are due to the smooth model of the diode used by
SMASH, and mainly to the threshold of around 0.2 V. Such a threshold
yields small differences in the conduction state of the diode with
respect to the ideal diode.


[image: figures/electronics/CircuitRLCD/comp_SMASH_SICONOS_BE10us.*]
fig 4: SMASH and SICONOS simulation results with backward Euler
integration, 10 μs time step




[image: figures/electronics/CircuitRLCD/comp_SMASH_SICONOS_TRAP10us.*]
fig 5: SMASH and SICONOS simulation results with trapezoidal
integration, 10 μs time step











          

      

      

    

  

    
      
          
            
  
Tutorial: A 4-diodes bridge wave rectifier


Preamble

This tutorial is dedicated to the simulation of the system shown on fig 1: Diode bridge below. We will describe the step-by-step building of its modelisation
as a nonsmooth dynamical system and its time integration.


[image: figures/electronics/DiodeBridge/diodeBridge.*]
fig 1: Diode bridge



A LC oscillator initialized with a given voltage
across the capacitor and a null current through the inductor provides
the energy to a load resistance through a full-wave rectifier
consisting of a 4 ideal diodes bridge. Both waves of the oscillating
voltage across the LC are provided to the resistor with current
flowing always in the same direction. The energy is dissipated in the
resistor resulting in a damped oscillation.

The diode behavior is presented on fig 2: diode characteristics, the left-hand sketch displays the ideal diode characteristic and the right-hand sketch displays the usual exponential characteristic as stated by Shockley’s law.


[image: figures/electronics/diodeNonSmooth.*]
fig 2: diode characteristics



The diodes, supposed to be ideal, lead to complementarity between voltage and intensity, introducing nonsmoothness into the system. This will be detailed later.




Siconos driver file

To run a simulation in siconos, it is necessary to write a “driver” file, either in C++ (this file must be compiled and link with siconos libraries)
or in python and to execute it. In both cases, the whole process is handled by the ‘siconos’ script:

siconos DiodeBridge.cpp





will compile, link and execute, while:

siconos DiodeBridge.py





will execute your python script.

Siconos can obviously be used in an interactive python session or notebook. This is probably the easiest way to proceed with this tutorial.

Remarks:



	this example is available in siconos examples package under Electronics/DiodeBridge directory, in C++, python and as a notebook.
For the latter just run:

ipython notebook DiodeBridge.ipynb





to interactively run this tutorial.



	In this tutorial, we assume that siconos is properly installed on you system, as explained in Installation guide.







Let us start with a short description of the three main steps always required to run a simulation.


	First of all, you will need to describe properly the system as a nonsmooth dynamical system, i.e. :


	define the ordinary differential equations set (the Dynamical Systems) that represent the dynamics,


	define the ‘nonsmooth’ part of the system, through nonsmooth laws  and relations between variables that may constraint the state.






	Then you will need to choose a simulation strategy, to define how the nonsmooth system will be integrated over a time step : which discretisation and integrators for the dynamics (one-step integrators), which formulation and solvers for the nonsmooth problem and so on.


	Finally, you will need to run your simulation and post-process the results.
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Building a nonsmooth dynamical system


Modeling the dynamics

The considered oscillator is a linear dynamical system with time-invariant coefficients. Using the Kirchhoff current and voltage laws and
branch constitutive equations, the dynamics of the system writes

and if we denote

we get a first order linear system

with the unknowns  and .

To represent this kind of ordinary differential equations, siconos has a class :doxysiconos:`FirstOrderLinearTIDS` (TIDS stands for time-invariant coefficients dynamical system)
which inherits from :doxysiconos:`DynamicalSystem`. Check Dynamical Systems to find a complete review of all the dynamical systems formalisms available in the software.

# import siconos package
import siconos.kernel as sk
# numpy for vectors and matrices
import numpy as np

# dynamical system parameters
Lvalue = 1e-2    # inductance
Cvalue = 1e-6    # capacitance
Rvalue = 1e3     # resistance
Vinit = 10.0     # initial voltage
x0 = [Vinit, 0.] # initial state
# A matrix of the linear oscillator
A = np.zeros((2, 2), dtype=np.float64)
A.flat[...] = [0., -1.0/Cvalue, 1.0/Lvalue, 0.]

# build the dynamical system
ds = sk.FirstOrderLinearTIDS(x0, A)





A few remarks:


	in python you can use either lists or numpy arrays to build vectors or matrices used as siconos methods arguments.


	help can be found on siconos objects with the standard python help function. For example, to find how
the system can be build:

help(sk.FirstOrderLinearTIDS)










or by checking the siconos_api_reference or Python API reference documention.







Modeling the interactions

Now, the nonsmooth part of the system must be defined, namely what are the nonsmooth laws and constraints between the variables.
In Siconos, the definition of a nonsmooth law and a relation between one or two dynamical systems is called an Interaction
(see Interactions between dynamical systems).
Thus, the definition of a set of dynamical systems and of interactions between them will lead to the complete nonsmooth dynamical system.

For the oscillator of fig 1: Diode bridge, there exist some linear relations (constraints) between voltage and current inside the diode, given by

with

and recalling that

this is equivalent to the linear relation between  and :

To represent this kind of algebraic equations, siconos has a class :doxysiconos:`FirstOrderLinearTIR` (TIR stands for time-invariant coefficients relations)
which inherits from :doxysiconos:`Relation`. Check Relations to find a complete review of all the relations formalisms available in the software.

# --- build an interaction ---
interaction_size = 4  # number of constraints

# B, C, D matrices of the relation
C = [[0.,   0.],
    [0,    0.],
    [-1.,  0.],
    [1.,   0.]]

D = [[1./Rvalue, 1./Rvalue, -1.,  0.],
    [1./Rvalue, 1./Rvalue,  0., -1.],
    [1.,        0.,         0.,  0.],
    [0.,        1.,         0.,  0.]]

B = [[0.,        0., -1./Cvalue, 1./Cvalue],
    [0.,        0.,  0.,        0.       ]]

# set relation type
relation= sk.FirstOrderLinearTIR(C, B)
relation.setDPtr(D)

# set nonsmooth law
nonsmooth_law = sk.ComplementarityConditionNSL(interaction_size)

# nslaw + relation == interaction
interaction = sk.Interaction(nonsmooth_law, relation)





Notice that a complete :doxysiconos:`FirstOrderLinearTIR` writes

All components not set during build are considered to be zero (which is the case here for F and e).

Each diode of the bridge is supposed to be ideal, with the behavior shown on left-hand sketch of fig 2: diode characteristics.
Such a behavior can be described with a complementarity condition between current and reverse voltage.

Complementarity between two variables  writes

or, using “” symbol,

The inequalities must be considered component-wise.

Then, back to our circuit, the complementarity conditions, results of the ideal diodes characteristics are given by:

with the previously defined  and . Note that depending on the diode position in the bridge,  stands for the reverse voltage across
the diode or for the diode current.

To represent such a nonsmooth law siconos has a class :doxysiconos:`ComplementarityConditionNSL` (you will find NSL in each class-name defining a nonsmooth law)
which inherits from :doxysiconos:`NonSmoothLaw`. Check Non Smooth Laws to find a complete review of all available laws in the software.

nonsmooth_law = sk.ComplementarityConditionNSL(interaction_size)





The interaction can be completely defined:

interaction = sk.Interaction(nonsmooth_law, relation)





Notice that this interaction just describe some relations and laws but is not connected to any real dynamical system, for the moment.

The modeling part is almost complete, since only one dynamical system and one interaction are needed to describe the problem.
They must be gathered into a specific object, the :doxysiconos:`Model`.
A model contains a nonsmooth dynamical system and the description of its simulation. The building of this object is quite simple: just
set the time window for the simulation, include dynamical systems and link them to the correct interactions.

# dynamical systems and interactions must be gathered into a model
t0 = 0. # initial time
T = 5.0e-3 # duration of the simulation
DiodeBridge = sk.Model(t0, T)
# add the dynamical system in the non smooth dynamical system
DiodeBridge.nonSmoothDynamicalSystem().insertDynamicalSystem(ds)

# link the interaction and the dynamical system
DiodeBridge.nonSmoothDynamicalSystem().link(interaction, ds)










Describing the simulation of the nonsmooth dynamical system

You need now to define how the nonsmooth dynamical system will be integrated over time. This is the role of the simulation, which must set:


	how dynamical systems are discretized and integrate over a time step


	how the nonsmooth problem will be formalized and solved




Two different strategies are available : event-capturing (a.k.a time stepping) schemes and event-driven schemes. Check Simulation of non-smooth dynamical systems for details
or :cite:`Acary.Brogliato2008` for even more details.

For the Diode Bridge example, an event-capturing strategy will be used, with an Euler-Moreau integrator and a LCP (Linear Complementarity Problem)
formulation.

Let us start with the ‘one-step integrator’, i.e. the description of the discretisation and integration of the dynamics over a time step, between
time  and . The integration of the equation over the time step is based on a  -method. The process is detailed in Event-Capturing schemes and, for first-order systems, leads to

This corresponds to :doxysiconos:`EulerMoreauOSI` integrators, which inherits from :doxysiconos:`OneStepIntegrator`. Check Time integration of the dynamics to find a complete review of integrators available in the software.

theta = 0.5
osi = sk.EulerMoreauOSI(theta)
osi.insertDynamicalSystem(ds)





Notice that each dynamical system of the model must be associated to one and only one one-step integrator.

Next, based on the simulation strategy and the time-integration, a one-step nonsmooth problem must be formalized, see Simulation of non-smooth dynamical systems and Nonsmooth problems formulation and solve.

Considering the following discretization of the previously defined relations and nonsmooth law

we get

with

This is known as a Linear Complementarity Problem, written in siconos thanks to :doxysiconos:`LCP` class, which inherits from :doxysiconos:`OneStepNSProblem`.
As usual, check Nonsmooth problems formulation and solve for a complete review of the nonsmooth problems formulations available in Siconos.
To each formulation, one must associate a solver, picked from the list given in LCP solvers:

import siconos.numerics as sn
#  Non smooth problem
osnspb = sk.LCP(sn.SICONOS_LCP_NSQP)





Notice that solvers come from siconos numerics and are identified thanks to an id. The connection between ids and solvers is given in LCP solvers.

Then the last step consists in the simulation creation, with its time discretisation:

# simulation and time discretisation
time_step =  1.0e-6
td = sk.TimeDiscretisation(t0, time_step)
simu = sk.TimeStepping(td, osi, osnspb)





Finally, the simulation is used to initialize the model, which is now complete and ready to run:

DiodeBridge.setSimulation(simu)
DiodeBridge.initialize()








Leading the Simulation Process

The easiest way to run your simulation is to call:

s->run()





But after that you only have access to values computed at the last
time step, which might not be enough …

For the present case,  at each time step are needed for postprocessing. Here is an example on how to get and save them in a numpy array:

N = (T - t0) / time_step
data_plot = np.zeros((N, 8))
y = interaction.y(0)
lamb = interaction.lambda_(0)
x = ds.x()
k = 0
data_plot[k, 1] = x[0] #  inductor voltage
data_plot[k, 2] = x[1] # inductor current
data_plot[k, 3] = y[0] # diode R1 current
data_plot[k, 4] = - lambda_[0] # diode R1 voltage
data_plot[k, 5] = - lambda_[1] # diode F2 voltage
data_plot[k, 6] = lambda_[2] # diode F1 current
data_plot[k, 7] = y[0] + lambda_[2] # resistor current
while simu.hasNextEvent():
    k += 1
    simu.computeOneStep()
    data_plot[k, 0] = simu.nextTime()
    data_plot[k, 1] = x[0]
    data_plot[k, 2] = x[1]
    data_plot[k, 3] = y[0]
    data_plot[k, 4] = - lambda_[0]
    data_plot[k, 5] = - lambda_[1]
    data_plot[k, 6] = lambda_[2]
    data_plot[k, 7] = y[0] + lambda_[2]
    simu.nextStep()






	:doxysiconos:`hasNextEvent()` is true as long as there are events to be considered, i.e. until T is reached


	:doxysiconos:`nextStep()` is mainly used to increment the time step, save current state and prepare initial values for next step.


	:doxysiconos:`computeOneStep()` performs computation over the current time step. In the Moreau’s time stepping case, it will first integrate the dynamics to
obtain the so-called free-state, that is without non-smooth effects, then it will formalize and solve a LCP before re-integrate the dynamics using the LCP results.




The results can now be postprocessed, with matplotlib for example:

import matplotlib.pyplot as plt
plt.subplot(411)
plt.title('inductor voltage')
plt.plot(data_plot[0:k - 1, 0], data_plot[0:k - 1, 1])
plt.grid()
plt.subplot(412)
plt.title('inductor current')
plt.plot(data_plot[0:k - 1, 0], data_plot[0:k - 1, 2])
plt.grid()
plt.subplot(413)
plt.title('diode R1 (blue) and F2 (green) voltage')
plt.plot(data_plot[0:k - 1, 0], -data_plot[0:k - 1, 4])
plt.plot(data_plot[0:k - 1, 0], data_plot[0:k - 1, 5])
plt.grid()
plt.subplot(414)
plt.title('resistor current')
plt.plot(data_plot[0:k - 1, 0], data_plot[0:k - 1, 7])
plt.grid()





[image: figures/electronics/DiodeBridge/diodeBridgeResult.*]






          

      

      

    

  

    
      
          
            
  
Electronics



	Tutorial: A 4-diodes bridge wave rectifier
	Preamble

	Siconos driver file

	Building a nonsmooth dynamical system
	Modeling the dynamics

	Modeling the interactions





	Describing the simulation of the nonsmooth dynamical system

	Leading the Simulation Process





	Simulation of an electrical oscillator supplying a resistor through a half-wave rectifier
	Description of the physical problem : electrical oscillator with half-wave rectifier

	Definition of a general abstract class of NSDS : the linear time invariant complementarity system (LCS)
	Dynamical system and Boundary conditions

	Relation between constrained variables and state variables

	Definition of the Non Smooth Law between constrained variables

	The formalization of the electrical oscillator with half-wave rectifier into the LCS

	Dynamical equation

	Relations

	Non Smooth laws





	Description of the numerical simulation: the Moreau’s time-stepping scheme
	Time discretization of the dynamical system

	Time discretization of the relations

	Time discretization of the non-smooth law

	Summary of the time discretized equations

	Numerical simulation





	Comparison with numerical results coming from SPICE models and algorithms
	Characteristic of the diode in the SPICE model

	Simulation results

















          

      

      

    

  

    
      
          
            
  
Continuous integration for Siconos project

A git push into siconos github will launch travis (on github) and jenkins (ci-inria) process, as described in .travis.yml file (for both travis and jenkins).

The following process will be executed on a worker:


	git clone siconos from github


	create build dir


	run in build dir:

../CI/driver.py --run --root-dir=..









For Travis, the ‘worker’ is the default one, provided by github-travis service.
The task executed is ‘default’ defined in tasks.py.
The ouput can be checked here : https://travis-ci.org/siconos/siconos

For Jenkins, the ‘worker’ is one of the ‘nodes’ available on Jenkins interface, e.g. siconos—vm0, siconos—vm1 …
The executed tasks are those listed in tasks.py in the dictionnary known_tasks, for the chosen hostname (i.e. node name).
For example, if:

known_tasks = {'siconos---vm0':
             (siconos_fedora_latest,
              siconos_gcc_asan,

             'siconos---vm1':
             (siconos_documentation,
              siconos_numerics_only,





then tasks siconos_fedora_latest and siconos_gcc_asan will be executed on node vm0, while siconos_documentation and siconos_numerics_only
will be executed on vm1.

Example of output: https://ci.inria.fr/siconos–/job/continuous3/lastSuccessfulBuild/console [https://ci.inria.fr/siconos--/job/continuous3/lastSuccessfulBuild/console]

Notice that this is equivalent to run, on another worker:

./driver.py  --run --root-dir=.. --tasks=siconos_documentation,siconos_numerics_only





To check what will be executed by the command above, just try:

./driver.py  --dry-run --run --root-dir=.. --tasks=siconos_documentation,siconos_numerics_only





The output will look like:

Would call:
- cmake -DMODE=Continuous -DCI_CONFIG=with_documentation -DWITH_DOCKER=1 -DBUILD_CONFIGURATION=Release -DDOCKER_DISTRIB=ubuntu:16.10 -DDOCKER_TEMPLATES=build-base,gcc,gfortran,gnu-c++,atlas-lapack,lpsolve,python-env,documentation -DDOCKER_TEMPLATE=gcc-atlas-lapack-documentation -DDOCKER_PROJECT_SOURCE_DIR=/home/perignon/Softs/siconos/. -DDOCKER_SHARED_DIRECTORIES= /home/perignon/Softs/siconos/./CI
- make - ki target,
for target in docker-build docker-cmake docker-make docker-make-install docker-make-doc docker-make-upload
both from path _ubuntu-16.10_with_documentation

Would call:
- cmake -DMODE=Continuous -DCI_CONFIG=no_cxx -DWITH_DOCKER=1 -DBUILD_CONFIGURATION=Release -DDOCKER_DISTRIB=ubuntu:16.10 -DDOCKER_TEMPLATES=build-base,gcc,gfortran,atlas-lapack,lpsolve,python-env -DDOCKER_TEMPLATE=gcc-atlas-lapack -DDOCKER_PROJECT_SOURCE_DIR=/home/perignon/Softs/siconos/. -DDOCKER_SHARED_DIRECTORIES= /home/perignon/Softs/siconos/./CI
- make - ki target,
for target in docker-build docker-ctest
both from path _ubuntu-16.10_no_cxx





Which means that (for numerics_only), in dir _ubuntu-16.10_no_cxx


	the ‘cmake -DMODE …’ line will be executed to configure the ci project and its targets




The following targets will be executed:
* make docker-build, to create a docker image, based on ubuntu 16.10 with packages gcc, atlas … will be created, with some associated volumes
* make docker-ctest : call cmake, make, make test on Siconos sources inside a docker container, based on the image created with make docker-build.

A report will be sent to siconos cdash.

For details on the description of a task, check How to add and test a new continuous integration task for Siconos project.





          

      

      

    

  

    
      
          
            
  
How to add and test a new continuous integration task for Siconos project


What is a “Continuous integration task”?


	the definition of a context (operating system, libraries, a specific compiler …)


	a specific siconos configuration (list of components, with or without python and so on)


	a list of ‘targets’ to be executed (like build siconos, run tests …)




Once defined (see below) this task will be executed on a runner (Travis or Jenkins/ci-inria) everytime somebody push into siconos github repository.




Create a task


	Create a file my_task_name.cmake in CI/config dir. This file will be used to set siconos configuration options and components to be built.





For example, if you need to compile siconos externals and numerics components, without python wrappers in DEV_MODE, task_name.cmake should contain:

set_option(DEV_MODE ON)
set_option(WITH_PYTHON_WRAPPER OFF)
set_components(externals;numerics)





By default, variables not set in my_task_name.cmake are read from cmake/siconos_default.cmake.





	Create a new entry in file task.py, e.g.:


	my_new_task = CiTask(

	ci_config=’task_name’,
distrib=’ubuntu:16.10’,
pkgs=[‘build-base’, ‘gcc’, ‘gfortran’, ‘gnu-c++’, ‘atlas-lapack’, ‘python-minimal’],
srcs=[‘.’],
targets={‘.’: [‘docker-build’, ‘docker-ctest’]})











	
	ci_config is the name (without extension) of the file in directory CI/config where siconos configuration is described.

	Note that the file task_name.cmake must exist (and may be empty).







	distrib is the name of a docker image with its version (from docker hub)


	pkgs is the list of dependencies that must be installed in the docker image


	srcs is the path to what must be configured/built (e.g. siconos/ or siconos/examples sources)


	targets is the list of what will be executed. See the list of existing targets below (Available ci targets).








	add the task into the dictionnary known_tasks in file tasks.py. The key in this dictionnary will defined the worker on which
the task will be executed.







Options sent by driver


	For Docker (i.e. used when cmake is called to build docker container, images, volumes …)


	WITH_DOCKER : sounds rather useless, always 1.


	DOCKER_DISTRIB : name of the docker image used as source. Set with parameter ‘distrib’ of tasks in tasks.py


	DOCKER_TEMPLATES : list of dependencies (e.g. lapack, gcc, …)


	DOCKER_TEMPLATE : ? The difference with DOCKER_TEMPLATES is not clear to me


	DOCKER_PROJECT_SOURCE_DIR : path to Siconos sources.


	DOCKER_SHARED_DIRECTORIES :


	





	For ctest


	BUILD_CONFIGURATION : build type used by ctest (ie CMAKE_BUILD_TYPE). Release, Debug, Profiling (default).
Set with parameter ‘build_configuration’ of tasks in tasks.py.

Note FP: used only when ‘make docker-ctest’ target is called while ‘make docker-cmake’ will keep default conf from siconos. This should be fixed?



	MODE :


	CI_CONFIG











Available ci targets

All possible targets are described/defined in CI/cmake/Docker.cmake file. SOFT corresponds to the input srcs of task class, e.g. path to siconos
CMakeLists.txt or to siconos/examples CMakeLists.txt.


	docker-build : create docker image and associated volumes (workdir and /usr/local)


	docker-cmake : configure SOFT inside docker image


	docker-make : build SOFT inside docker image


	docker-make-clean : clean build dir


	docker-make-install : install SOFT inside docker image


	docker-make-uninstall : uninstall SOFT


	docker-make-test : run SOFT tests (if any)


	docker-make-doc : build and publish siconos doc


	docker-ctest : run ctest for SOFT (i.e. cmake, make, make test)


	docker-hard-clean : clean docker on worker (remove unused volumes, images …). Execute script docker-cleanup.sh.


	docker-interactive : start a docker container based on the created image










          

      

      

    

  

    
      
          
            
  
Developer guide



	Time integration of the dynamics - Exact scheme
	Notes, remarks, questions

	Non-smooth problem formulation





	Continuous integration for Siconos project

	About plugins in classes
	Rules

	Example/template









To do.

Unpolished developement notes.





          

      

      

    

  

    
      
          
            
  
Time integration of the dynamics - Exact scheme

Time integration for second-order (Lagrangian) systems of the form:

equivalent to

with

 stands for right limit of v in t.

with the vectors .

Let us integrate the dynamics over a time step, .

We consider two different schemes, the classical (in Siconos) ‘Moreau-Jean’ and ‘Modal-Moreau-Jean’ denoted respectively MJ and MMJ in the following.

Notations :

In the following, we will use k for space (bottom) indices and i for time (top) indices.

MJ is based on a theta-scheme, for 

With MJM we consider diagonal stiffness and damping,

 and  being respectively the modal pulsation and the damping parameter (values to be taken from 2.2 and 2.3 in JSV paper).

Bilbao exact scheme writes:

for  and  some diagonal matrices, with

For MJ, this leads to

using , we get

And for MMJ:

With , we get

and

Both discretisations writes

with


Notes, remarks, questions


	Quel nom pour “modal” Moreau-Jean? i.e. qui est à la source (ref?) du schéma de Bilbao?


	Vérif comportement de W quand 







Non-smooth problem formulation

with







          

      

      

    

  

    
      
          
            
  
About plugins in classes

An attempt to write some rules when implementing a plugin for a class attribute …


Rules

Consider a class with an attribute ‘_xx’, for which you want to propose a plugin-mechanism.

Attributes to add to the class:


	_pluginxx, a :doxysiconos:`PluggedObject`,




Methods to add to the class:


	getPluginXx() returns the _pluginxx object


	setComputeXxFunction(args), args=(path,name) or (fptr) to connect fPtr of the PluggedObject to a user-defined function ‘name’ in file ‘path’.


	computeXx(…) call the plugged function and update _xx content.




Others


	_zeroPlugin() –>  set to ‘zero’ all PluggedObject of the class


	updatePlugins(time) –> call all plugged functions of the class, for time and current state




Plugged functions can be set either with the construtor or with the setComputeXxFunction method.




Example/template

computation of  in :doxysiconos:`FirstOrderNonLinearDS`.

Attributes and methods


	:doxysiconos:`FirstOrderNonLinearDS::_f`


	:doxysiconos:`FirstOrderNonLinearDS::_pluginf`


	:doxysiconos:`FirstOrderNonLinearDS::computef()`


	:doxysiconos:`FirstOrderNonLinearDS::setComputeFFunction`


	:doxysiconos:`FirstOrderNonLinearDS::_zeroPlugin`


	:doxysiconos:`FirstOrderNonLinearDS::updatePlugins`










          

      

      

    

  

    
      
          
            
  
Control Toolbox

THIS PAGE IS OUTDATED AND MUST BE REVIEWED


Control Manager

Rules:


	define a control manager linked to an EXISTING model:

SP::ControlManager cm(new ControlManager(myModel));



	add Sensors and Actuators to this manager:

SP::TimeDiscretisation t1(t0,h);
SP::Sensor s1 = cm->addSensor(typeS1,t1);
SP::TimeDiscretisation t2(t0,h);
SP::Actuator a1 = cm->addActuator(typeA1,t2);
// ...









typeS1 and typeA1 are integers which represent the type of the Sensor/Actuator. See corresponding
sections for details and various types. n
Important: each actuator/sensor must have its own TimeDiscretisation object. n
Why: after each process of an event, its TimeDiscretisation is increment (ie tk->tk+1 etc )
and if several events share the same TimeDiscretisation, it will be incremented too many times.


	initialize the manager:

cm->initialize();









This result in the scheduling of events corresponding to each Sensor/Actuator into the EventsManager of the simulation.
It must be called BEFORE simulation->initialize()

It is also possible to insert a new Sensor or Actuator at any time during the simulation:

cm->addAndRecordSensor(typeS1,t3);
cm->addAndRecordActuator(typeA1,t4);








Sensors


	tk


	capture


	map of vectors. Save values for all events?







Actuators

link to one DS.


	tk


	a way to compute the value of z


	setZ in DS










          

      

      

    

  

    
      
          
            
  
Dynamical Systems

:doxysiconos:`DynamicalSystem` is the class used in Siconos to describe a set of ordinary differential equations, which is the essential first tep of any Non-Smooth problem description in Siconos.
This base class defines a common interface to all systems. To fit with different types of problems, we propose several derived classes representing some specific formulations, as described below.

[image: figures/dynamical_system_classes.*]
As usual, a complete description of the interface (members and methods) of these classes can be found in the doxygen documentation, see for example :doxysiconos:`DynamicalSystem`.

Note that :doxysiconos:`DynamicalSystem` is an abstract class, and no object of this type can be implemented. It just provides a generic interface for all systems.


Overview

The most general way to write dynamical systems in Siconos is

n-dimensional set of equations where


	t is the time


	 is the state.


	 the derivative of the state according to time


	 is a vector of arbitrary algebraic variables, some sort of discrete state.
For example, z may be used to set some perturbation parameters, or anything else.


	.




Under some specific conditions, we can rewrite this as:

“rhs” means right-hand side.
Note that in that case  must be invertible.

The aim of this class is to provide some members and functions for all dynamical systems types (ie for all derived classes), but with some specific behaviors depending on the type of system (see the related sections below for details).

That means that all members and functions described below are also available in any of the derived classes.

Each system is identified thanks to a number and the current state of the system is saved as a vector :doxysiconos:`DynamicalSystem::x`, with x[0]=  and x[1]= .

All the functions and their gradients (  …) can be accessed with functions like :doxysiconos:`DynamicalSystem::jacobianRhsx` for . Check the reference for a complete list of the members and methods.

The common rules for all members are, ‘name’ being the required variable:


	getName() to get a copy of the content of the object


	name() to get a pointer to the object


	setName(obj) to copy obj into Name


	setNamePtr(objPtr) to link objPtr with Name




Plug-in: some members can be connected to user plug-in functions, used to compute them. In that case, the following methods can be used:
- setComputeNameFunction(…) to link name with your own function
* computeName(…) to compute name using your own function

For details about plug-in mechanism, see User-defined plugins.

For instance, if you want to use the internal forces operators in Lagrangian systems (see below), two solutions: either the forces are a constant vector or are connected to a plug-in and can then depend on time, state of the system …

First case:

// we suppose that ds is an existing pointer to a LagrangianDS
SP::SiconosMatrix myF(new SimpleVector(3));
// fill my G in ...
ds->setFInt(*myF); // copy myF values into fInt
// OR
// link fInt to myF: any change in one of them will impact on the other.
ds->setFIntPtr(myF);





Second case:

// we suppose that ds is an existing pointer to a LagrangianDS
// and that myFunction is a c function implemented in myPlugin.cpp
ds->setComputeFInt("myPlugin", "myFunction");
// ...
ds->computeFInt(time);
// compute fInt value at time for the current state





Note that the signature (e ie the number and type of arguments) of the function you use in your plugin  must be exactly the same as the one given in kernel/src/plugin/DefaultPlugin.cpp for the corresponding function.




Common interface

The following functions are (and must) be present in any class derived from DynamicalSystems


	:doxysiconos:`DynamicalSystem::initRhs()`


	:doxysiconos:`DynamicalSystem::icomputeRhs(time)`


	:doxysiconos:`DynamicalSystem::computeJacobianRhsx(time)`


	:doxysiconos:`DynamicalSystem::initializeNonSmoothInput(level)`


	:doxysiconos:`DynamicalSystem::swapInMemory()`


	:doxysiconos:`DynamicalSystem::display()`


	:doxysiconos:`DynamicalSystem::resetAllNonSmoothParts()`


	:doxysiconos:`DynamicalSystem::resetNonSmoothPart(level)`







First order dynamical systems


Non linear

:doxysiconos:`FirstOrderNonLinearDS`

They are described by the following set:

with:


	


	f(x,t): the vector field - 


	r: input due to non-smooth behavior - Vector of size n.


	JacobianXF = , a nX n square matrix, is also a member of the class.


	M is supposed to be invertible (if not, we can not compute x[1]=rhs …).


	initial conditions are given by the member x0, vector of size n. This corresponds to x value when simulation is starting,




e ie after a call to simulation initialize() function. n


	There are plug-in functions in this class for f and its Jacobian, jacobianfx.




We have:

Other variables are those of :doxysiconos:`DynamicalSystem` class, but some of them are not defined and thus not usable:


	g and its gradients







Linear

:doxysiconos:`FirstOrderLinearDS`

Described by the set of n equations and initial conditions:

With:


	A(t,z): nXn matrix, state independent but possibly time-dependent.


	b(t,z): Vector of size n, possibly time-dependent.




A and B have corresponding plug-in functions.

Other variables are those of :doxysiconos:`DynamicalSystem` and FirstOrderNonLinearDS classes, but some of them are not defined and thus not usable: n
* g and its gradients
* f and its gradient

And we have:




Linear and time-invariant


class FirstOrderLinearTIDS




Derived from FirstOrderLinearDS, described by the set of n equations and initial conditions:

Same as for FirstOrderLinearDS but with A and b constant (ie no plug-in).






Second order (Lagrangian) systems


Non linear

:doxysiconos:`LagrangianDS`, derived from :doxysiconos:`DynamicalSystem`.

Lagrangian second order non linear systems are described by the following set of nDof equations + initial conditions:

with:


	Mass(q,z): nDofX nDof matrix of inertia.


	q: state of the system - Vector of size nDof.


	 the derivative of the state according to time.


	


	:  non linear terms, time-independent - Vector of size nDof.


	: time-dependent linear terms - Vector of size nDof.


	: external forces, time-dependent BUT do not depend on state - Vector of size nDof.


	p: input due to non-smooth behavior - Vector of size nDof.




Note that the decomposition of  is just there to propose a more “comfortable” interface for user but does not interfer with simulation process.

Some gradients are also required:


	jacobianFInt[0] =  - nDofX nDof matrix.


	jacobianFInt[1] =  - nDof X nDof matrix.


	jacobianfGyr[0] =  - nDof X nDof matrix.


	jacobianfGyr[1] =  - nDof X nDof matrix.




We consider that the Mass matrix is invertible and that its gradient is null.

There are plug-in functions in this class for  and the four Jacobian matrices.

Other variables are those of :doxysiconos:`DynamicalSystem` class, but some of them are not defined and thus not usable: n
* g and its gradients

Links with :doxysiconos:`DynamicalSystem` are,  and . n

And we have:

I: identity matrix.




Linear and time-invariant

class LagrangianLinearTIDS, derived from LagrangianDS.

With:


	C: constant viscosity nDof X nDof matrix


	K: constant rigidity nDof X nDof matrix




Other variables are those of :doxysiconos:`DynamicalSystem` and LagrangianDS classes, but some of them are not defined and thus not usable: n
* g and its gradients
* fL, fInt, fGyr and their gradients.

And we have:






Dynamical Systems plug-in functions


	:doxysiconos:`DynamicalSystem`: 


	:doxysiconos:`FirstOrderNonLinearDS`: 


	:doxysiconos:`FirstOrderLinearDS`: A(t,z), b(t,z)


	:doxysiconos:`LagrangianDS`: .


	:doxysiconos:`LagrangianLinearTIDS`: 










          

      

      

    

  

    
      
          
            
  
Event-Capturing schemes


General Principle

Roughtly speaking, the event-capturing, a.k.a. time-stepping, method consists in the time-discretisation of the whole system (dynamics + relations + non-smooth laws),
leading to a so-called one-step non smooth problem (OSNSP) solved at each time step.

Indeed, the main stages of the process are:


	integrate the dynamics without constraints, to get some “free” solutions


	formalize and solve a OSNSP (a LCP for example)


	update the dynamics with the OSNSP solutions to get the full state.




The discretization process for different dynamical systems, relations and laws is described thereafter.
A summary of all the results can be found in section Summary of the time discretized equations

Notations:

In the following sections, the systems are integrated over a time step  of constant size .
The approximation of any function  at the time  is denoted .
Note that in the relations writings, upper case letters are used for all variables related to DynamicalSystem objects:
 are concatenation of  of the dynamical systems variables concerned by the relation.




First order systems


Time Discretisation of the Dynamics


First Order Non Linear Systems

with ,  being the set of all relations in which the current dynamical system, number , is involved.
In the following, the index “d” will be omitted to lighten notations.

The integration of the ODE over a time step   of length   is :

The left-hand term is  .

Right-hand terms are approximated with a -method:

and the third integral is approximated with:

Then, we get the following “residu”

Note: We introduce the “free” notation for terms related to the smooth part of the system.

A Newton method is used to solve . The gradient of the residu according to  is:

And we get (index k corresponds to the Newton iteration number):

with

If we assume that  is invertible, we get the solution at Newton iteration k+1:




First Order Linear Systems

For the integration of the ODE over a time-step, we proceed as in the previous section for non-linear systems to get:

We denote:

and assuming it is invertible, we get:




First Order Linear Systems with time invariant coefficients

Using the results of the previous section, the discretisation is straightforward:

with a W that does not depend on time:






Time discretization of the relations

In the following,  represents the concatenation of all  vectors for the DS involved in the present relation.


First Order (non-linear) Relations

Then, for the iteration  of the Newton process, we get:

These constraints are linearized around state :

Where  stands for  and

In the case where :

We can write

where , is a diagonal block matrix holding the ,
then, if there is one and only one interaction we have:

and finally:




First Order Linear Relations

Note: for time-invariant relations, B, C, F, D and e are constant vectors and matrices </em>

The Time discretization of the relations is fully implicit and may be written as :






Discretisation of the non-smooth law


Complementarity Condition

The complementarity condition writes:

and the discretisation is straightforward:








Lagrangian systems


Time Discretisation of the Dynamics


Lagrangian (second order) Non Linear Systems

We provide in the following sections a time discretization method of the Lagrangian dynamical systems, consistent with the non smooth character of the solution.

with

Remark: recall that  means  ie right limit of  in t.

Left hand side is discretised by assuming that:

As for first order non-linear systems, we use a -method to integrate the other terms, and obtain:

and for the last term, we set a new variable  such that:

Finally the full system discretisation results in:

The “free” notation still stands for terms related to the smooth part of the system.
The displacement is integrated through the velocity with :

Substituing this into the residu leads to a function depending only on , since state “i” and “k” are supposed to be known.

A Newton method will be applied to solve .

That requires to compute the gradient of the residu;
assuming that the mass matrix evolves slowly with the configuration in a single time step, we get:

and denoting:

we get (index k corresponds to the Newton iteration number):

with

As an approximation for , we choose:

with .
Moreover, if  is evaluated at the first step of the Newton iteration, with , we get:

Finally, if  is invertible, the solution at iteration k+1 is given by,




Lagrangian (second order) Linear Systems with Time Invariant coefficients

Proceeding in the same way as in the previous section, with  constant and , integration is straightforward:

Using the displacement integration through the velocity,

we get:

with  a constant matrix:

and if  is invertible,

The free velocity  correponds to the velocity of the system without any constraints.






Time discretization of the relations


Lagrangian Scleronomous Relations

with

From now on, to lighten the notations, the parameter  will omitted.

Considering the Newton process introduced above for Lagrangian non linear systems, the constraints write:

To evaluate  we still use the prediction  defined in the previous section:

Then we get:

These constraints are linearized around the point  and we neglect the second order terms in the computation of the jacobians.
It leads to:

As for the evaluation of the mass, the prediction of the position,  can be evaluated at the first iteration of the Newton process,




Lagrangian Rheonomous Relations

As for scleronomous relations, we get:




Lagrangian Compliant Relations

Following the same process as in the paragraph above, it comes:




Lagrangian Linear Relations

The discretisation is straightforward:






Time discretization of the Non Smooth laws

A natural way of discretizing the unilateral constraint  leads to the following implicit discretization :

In the Moreau’s time–stepping, we use a reformulation of the unilateral constraints in terms of velocity:

which leads to the following discretisation :

where  is a prediction of the position at time , for instance, .

To introduce a Newton impact law, consider an equivalent velocity defined by

and apply the constraints directly on this velocity :






Summary of the time discretized equations


First order systems


	Non Linear dynamics:





	Linear dynamics:





	Linear dynamics with time-invariant coefficients:





	Non Linear Relations





	Linear Relations







Lagrangian second-order systems


	Non Linear Dynamics:





	Linear Dynamics with and Time–Invariant Coefficients





	Lagrangian Scleronomous Relations





	Lagrangian Rheonomous Relations





	Lagrangian Compliant Relations





	Lagrangian Linear Relations












          

      

      

    

  

    
      
          
            
  
Event-Driven schemes


General Principle

The principle of the event-driven is based on the time-decomposition of the dynamics in modes, time-intervals where the dynamics is smooth, and discrete events, times where the dynamics are nonsmooth. From the numerical point of view, the event-driven scheme use the decomposition in time of the dynamics in order to


	detect and solve the non smooth dynamics at events with a reinitialization rule of the state,


	integrate the smooth dynamics between two events with any ODE solvers with root-findings and possibly bilateral constraints on the state.







Event Driven implementation


Integration of the smooth dynamics

Between events, the dynamics are integrated thanks to Lsodar algorithm and with the function EventDriven::integrate.

Considering two given functions f(x,t) and g(x,t), a call to:

integrate(tinit, tend, tout, iout)





results in the integration of the function f(x,t) between tinit and tend, and search for roots of the function g(x,t). If roots are found, integration stops, and last time is saved in tout.

The in-out parameter iout is an indicator that must be set to 1 at first call. If no root was found, it is equal to 2 if so to 3.

Thus for an EventDriven simulation:


	the dynamics of all the concerned DynamicalSystems is rewritten as 


	the relations are used to defined the g(x,t) functions




Once again the proper definition of f and g depends on the system type as described below.




Events

In Siconos the object Event just handle a type (see below) and a long int which corresponds to the time of occurrence of the event. A process function is also defined, which action depends on the event type.

The possible types (derived classes) are:


	TimeDiscretisationEvent: event that corresponds to user-defined time discretisation points. These events are created and schedule when the EventDriven simulation is initialized. Process function call results in :
* update (compute) output for all the concerned Interactions
* save current values (DynamicalSystems states and Interactions input/output) in memory vectors. Last saved values become initial values for next integration.


	NonSmoothEvent: “points” where the dynamics are non smooth and which required a special treatment. These events are detected thanks to a roots-finding algorithm, and corresponds to violation of some given constraints (relation). The action of the process function is roughly (the full process depends on the system type and is described in ref docSimuEDDetails):
* update (compute) output for all the concerned Interactions
* update the index sets
* formalize and solve one or more non-smooth problems
* save current values (DynamicalSystems states and Interactions input/output) in memory vectors. Last saved values become initial values for next integration.







The Events manager

To handle all the events, a specific object is built: the EventsManager. It belongs to the EventDriven class and holds two eventsContainers (sets of Events):
- pastEvents: for all the Events that has already been treated
- unProcessedEvents: for the future events, already scheduled but not treated
We also denote “currentEvent” the last processed event, which corresponds to the initial point of the current integration, and “nextEvent” the event following “currentEvent”.

The events manager is initialized with time-discretisation events, from the user time-discretisation. Then, each time a new event is detected (added by user or when a root is found during integration) it is scheduled in the manager.
The manager has also a link EventsManager::processEvents processEvents endlink function, which moves currentEvent to past events set, processes nextEvent and prepare the next step.

Other useful functions are:
- link EventsManager::startingTime() startingTime endlink, link EventsManager::nextTime() nextTime endlink






The Simulation process

Thus, a general step  of integration for EventDriven will looks like:
“While there are some events in the unProcessedEvents set, integrate the smooth dynamics between current and next event and then process with the behavior at event”.
Or:
code
SP::EventDriven s(new EventDriven(myModel));

s->initialize();

// We get the events manager
SP::EventsManager eventsManager = s->eventsManager();

// while there are some events …
while(eventsManager->hasNextEvent())
{


// integrate between current and next event
s->advanceToEvent();
// solve the non-smooth dynamics, if necessary …
eventsManager->processEvents();




}

// Or in one step:
while(eventsManager->hasNextEvent())
{


s->computeOneStep();




}
endcode




Event Driven algorithm for Lagrangian systems

At the time, the only available event-driven algorithm in Siconos is for Lagrangian dynamical systems, subjected to perfect unilateral constraints and with the Newton impact rules.

Because of the unilateral constraints, the evolution of the considered system may be non-smooth. Some jumps can occur in the velocity and the “acceleration” may not be defined everywhere. The generalized coordinates, assumed to be absolutely continuous are:

We will index with “+” and “-” right and left values of the variable at discontinuity.

The equations of motion are written in terms of a measure differential equation:

r being the generalized force due the unilateral constraints.
Using the Lebesgue decomposition theorem and its variants, the differential measure dv and dr are decomposed in:

First term of the decomposition corresponds to the smooth part, with , the acceleration in the usual sense. The second term corresponds to the behavior at times of discontinuities, ( : Dirac), and the last term, a singular measure, will be neglected.

Thanks to these decompositions, the non-smooth Dynamics can be split into “impact equations”, that will correspond to the non-smooth events, and some “smooth Dynamics”. These equations are completed by the constraints, formulated at different kinematics levels, as shown in the following paragraphs.


The impact equations

The impact equations can be written at the time  of discontinuities:

 is like an impulsion.

This equation will be solved at the time of impact together with an impact law. That is for a Newton impact law

This problem can be reduced on the local unknowns  if the matrix  is assumed to be invertible, leading to the following Linear Complementarity Problem at time  of discontinuities of v:

Later this system will be identified as “LCP at velocity level”.




The smooth Dynamics

The smooth dynamics which is valid almost everywhere for the Lebesgue measure  is governed by  the following equation:

where we assume that .

The following smooth systems are then to be solved:

To solve these systems, at each time, i.e. to known the configuration after each events and to integrate it numerically, it is useful to express the complementarity laws at different kinematics level. We also introduce the pre-defined index sets (about index sets, see ref docSimuIndexSets):n

 is the set of all the potential UnitaryRelations (UR).
 (or if the UR is in  then contact occurs).
 (or if the UR is in , contact remains, no take off).

This results in the new writing of the <b>Bilateral Smooth Dynamics</b>:

which can be reduced on variable  and , if M(q) is invertible, when :

Later this system will be identified as <b>”LCP at acceleration level”</b>.






The algorithm

Finally, the event-driven algorithm will be:

knowing the value of  and  at the beginning of the time step :

-# <b> Integration of the Bilateral Smooth Dynamics </b> up to an event given by the root-finding of the following function :

This results in the computation of  at this new point and to an update of the index sets  and .


	-# if  then Impacts occur:

	

	Formalize and solve the <b>”LCP at velocity level”</b>


	Update the index sets  and  and check that  







endif



	-# if  then

	
	Formalize and solve the <b>”LCP at acceleration level”</b>


	for  do
if  remove  from  and 
else if  then undetermined case.
endifn





endforn




endifn





-# go to the next time step.


Implementation in Siconos

According to ref doc_lagds, in Siconos, the Dynamics of Lagrangian systems is written as:

Next,:math:fGyr term will be forget and considered as included in .
And Lagrangian relations are (see ref docRelationLag):

Q (resp. P) being a collection of all the q (resp. p) of the Dynamical Systems involved in the Interaction.

As we have seen in the previous section, the notion of kinematics level is really important. We introduce this in Siconos thanks to
“[i]” notation. More precisely, for each Unitary Relation, we define y[i] as the derivative number i of variable y, according to time.
In the same way, we denote  the variable that is linked with y[i] through a Non-Smooth law (usually a complementarity).
Finally to each  corresponds a p[i].
To make things clearer, let us rewrite the previous defined systems with Siconos notations:


	<b>Bilateral Smooth Dynamics</b>:




with roots finding of:


	<b>”LCP at velocity level”</b>





	<b>”LCP at acceleration level”</b>




Then, to build an EventDriven simulation, it is necessary to define two OneStepNSProblems, one at velocity and one at acceleration level.
So here is a classical code for simulation construction:

EventDriven* s = new EventDriven(ball);
// -- Time discretisation --
TimeDiscretisation * t = new TimeDiscretisation(timeStep,s);
// -- OneStepIntegrators --
OneStepIntegrator * OSI = new Lsodar(setOfDS,s);
// -- OneStepNsProblem --
OneStepNSProblem * impact = new LCP(s, "impact",solverName,101, 0.0001,"max",0.6);
OneStepNSProblem * acceleration = new LCP(s, "acceleration",solverName,101, 0.0001,"max",0.6);





Finally, the algorithm described earlier is:

-# Integration of the Bilateral Smooth Dynamics:
To integrate these systems thanks to lsodar, we need to define f(x,t) and g(x,t).
To compute f(x,t), we:



	formalize and solve a “LCP at acceleration level” to compute 


	collect and rewrite the Dynamics of all the Dynamical Systems as a first order system, including the result of the LCP computation.







The function g(x,t) is given by:

Corresponding code:

s->advanceToEvent()
// This results in a call to Lsodar->integrate and to schedule of new non-smooth events if necessary





The next steps are done during call to eventsManager->processEvents(), but they will be detailed below.
-# Compute y[0] and y[1] and update the index sets:

simulation->updateOutput(0, 1);
simulation->updateIndexSets();





-# if , formalize and solve a LCP at velocity level:

simulation->computeOneStepNSProblem("impact");





-# compute p[1], post-impact velocity, y[1] and indexSet[2]:

simulation->update(1);





-# if , formalize and solve a LCP at acceleration level, and update index sets with some conditions:

simulation->computeOneStepNSProblem("acceleration");
simulation->updateIndexSetsWithDoubleCondition();





-# next time step:

simulation->nextStep();













          

      

      

    

  

    
      
          
            
  
Friction-Contact solvers

This page gives an overview of the available solvers for friction-contact (2D and 3D) problems and their required parameters.

For each solver, the input argument are:


	a FrictionContactProblem


	the unknowns (reaction,velocity)


	info, the termination value (0: convergence, >0 problem which depends on the solver)


	a :doxysiconos:`SolverOptions` structure, which handles iparam and dparam





2D solvers


CPG

function: :doxysiconos:`pfc_2D_cpg()`

parameters:


	iparam[0] (in), the maximum number of iterations allowed,


	iparam[1] (out), the number of iterations performed by the algorithm.


	dparam[0] (in), the tolerance required,


	dparam[1] (out), the residu.









3D solvers


Non-Smooth Gauss Seidel

function: :doxysiconos:`fc3d_nsgs()`

parameters:









          

      

      

    

  

    
      
          
            
  
User guide



	Modeling of non-smooth dynamical systems
	Dynamical Systems
	Overview

	Common interface

	First order dynamical systems

	Second order (Lagrangian) systems

	Dynamical Systems plug-in functions





	Interactions between dynamical systems
	Relations

	Non Smooth Laws





	User-defined plugins
	Plugins overview

	Example









	Simulation of non-smooth dynamical systems
	Event-Capturing schemes
	General Principle

	First order systems

	Lagrangian systems

	Summary of the time discretized equations





	Event-Driven schemes
	General Principle

	Event Driven implementation

	The Simulation process

	Event Driven algorithm for Lagrangian systems

	The algorithm





	Time discretisation

	Time integration of the dynamics

	Nonsmooth problems formulation and solve
	Linear nonsmooth problems

	The Simulation process

	Customize simulation behavior





	Solvers definition (numerics)
	LCP solvers

	Friction-Contact solvers

















          

      

      

    

  

    
      
          
            
  
Interactions between dynamical systems

An Interaction is an “object” that defines the way some Dynamical Systems are linked, how they behave together. For example if you consider a set of rigid bodies, Interactions will define what will happen when contact between bodies occurs.

First of all, we introduce the set of all possible interactions, indeed all interactions declared by user,

NSDS is the non-smooth dynamical system and  a single interaction.

An Interaction is applied to a set of Dynamical Systems, then the set 
is the set of all dynamical systems involved in .
Finally, we denote  the set of dynamical systems that are involved in interactions  and ;

Considering an interaction , upper case letters will be used to represent the concatenation of variables from the dynamical systems of .
Note that Index  for variables or operators specific to , will be omitted as soon as possible to lighten notations.

Then one get the following vectors of global coordinates, say X (or Q in the Lagrangian case):

 being the vectors of global coordinates of the Dynamical Systems involved in the Interaction.

Remember also that each DynamicalSystem as a variable called  (or  in the Lagrangian case), an input vector related to the non-smooth behavior or law, with:

Thus we define  for the Interaction as:

Warning: it is forbidden to mix first and second order Dynamical Systems in a single Interaction.

An Interaction is characterized by some “local” variables,  (also called output,  being the input) and . Both of them are “vector of vectors”:

 is a vector that represents the derivative number  of variable  according to time. Each  or  is a vector of size interactionSize.

Not that the number of saved derivatives depends on the problem type.

Then an Interaction proposes:
* a “Non Smooth Law” that links y and 
* a “Relation” between the local variables  and the global ones (those of the Dynamical Systems),  (the constraints).

As an example consider again the case of a ball bouncing on the ground:
* the Interaction will include the two dynamical systems (ball and ground)
* the relation will consist in defining y as the distance between the ground and the ball and  as something like the reaction of the ground at contact
(Lagrangian multipliers indeed).
* the Non-Smooth law will “say”: if there is contact, then the reaction is positive (y=0 then ) and if not, no reaction occurs(if ); and also that the velocity after contact is equal to the opposite of the one before contact multiplied by some “damping” coefficient (this corresponds to a Newton Impact Law, see below).

Definition and description of the different types of relations and non-smooth laws are presented in the sections below.



	Relations
	First Order Relations
	Non Linear

	Linear

	Linear with Time Invariant Coefficients





	Lagrangian (second order) Relations
	Scleronomous

	Rheonomous

	Compliant

	Linear and Time Invariant Coefficients





	Relations plug-in functions





	Non Smooth Laws
	Complementarity Condition

	Newton Impact

	Newton Impact-Friction

	Relay













          

      

      

    

  

    
      
          
            
  
LCP solvers

This page gives an overview of the available solvers for LCP in numerics component and their required parameters.

For each solver, the input argument are:


	a LinearComplementarityProblem structure


	the unknowns z and w


	info, the termination value (0: convergence, >0 problem which depends on the solver)


	a :doxysiconos:`SolverOptions` structure, which handles solver parameters (iparam and dparam)




Remark: when the filterOn parameter (from :doxysiconos:`SolverOptions`) is different from 0, lcp_compute_error() is called at the end of the
process to check the validity of the solution. This function needs a tolerance value and returns an error.
In that case, tolerance is dparam[0] and error output dparam[1]. Thus, in the following solvers, when dparam[0,1] are omitted, that means that they are not required inputs, and that if filter is on, some default values will be used.


lexicographic Lemke

Direct solver for LCP based on pivoting method principle for degenerated problem.


function: :doxysiconos:`lcp_lexicolemke()`

parameters:


	iparam[0] (in) : max. number of iterations


	iparam[1] (out): number of iterations processed










QP Solver

quadratic programm formulation for solving a LCP with a symmetric matrix M.

The QP we solve is


Minimize:  subject to 

which is the classical reformulation that can be found
in Cottle, Pang and Stone (2009).

If the symmetry condition is not fulfilled, use the NSQP Solver




function: :doxysiconos:`lcp_qp()`

parameters:


	dparam[0] (in): tolerance







NSQP Solver

non symmetric (and not nonsmooth as one could have thought in a plateform dedicated to nonsmooth problems)
quadratic programm formulation for solving an LCP with a non symmetric matrix.

function: :doxysiconos:`:doxysiconos:`lcp_nsqp()`

parameters:


	dparam[0] (in): tolerance







CPG Solver

Conjugated Projected Gradient solver for LCP based on quadratic minimization.
Reference: “Conjugate gradient type algorithms for frictional multi-contact problems: applications to granular materials”,
M. Renouf, P. Alart. doi:10.1016/j.cma.2004.07.009

function: :doxysiconos:`lcp_cpg()`

parameters:


	iparam[0] (in): maximum number of iterations allowed


	iparam[1] (out): number of iterations processed


	dparam[0] (in): tolerance


	dparam[1] (out): resulting error







PGS Solver

Projected Gauss-Seidel solver

function: :doxysiconos:`lcp_pgs()`

parameters:


	iparam[0] (in): maximum number of iterations allowed


	iparam[1] (out): number of iterations processed


	dparam[0] (in): tolerance


	dparam[1] (out): resulting error







RPGS Solver

Regularized Projected Gauss-Seidel, solver for LCP, able to handle with matrices with null diagonal terms

function: :doxysiconos:`lcp_rpgs()`

parameters:


	iparam[0] (in): maximum number of iterations allowed


	iparam[1] (out): number of iterations processed


	dparam[0] (in): tolerance


	dparam[1] (out): resulting error


	dparam[2] (in): rho







PSOR Solver

Projected Succesive over relaxation solver for LCP. See Cottle, Pang and Stone (2009), Chap 5

function: :doxysiconos:`lcp_psor()`

parameters:


	iparam[0] (in): maximum number of iterations allowed


	iparam[1] (out): number of iterations processed


	dparam[0] (in): tolerance


	dparam[1] (out): resulting error


	dparam[2] (in): relaxation parameter







NewtonMin Solver

a nonsmooth Newton method based on the min formulation of the LCP

function: :doxysiconos:`lcp_newton_min()`

parameters:


	iparam[0] (in): maximum number of iterations allowed


	iparam[1] (out): number of iterations processed


	iparam[2] (in): if > 0, keep the work vector (reduce the number of memory allocation if the same type of problem is solved multiple times)


	iparam[3] (in): if > 0. use a non-monotone linear search


	iparam[4] (in): if a non-monotone linear search is used, specify the number of merit values to remember


	dparam[0] (in): tolerance


	dparam[1] (out): resulting error







NewtonFB Solver

a nonsmooth Newton method based based on the Fischer-Burmeister NCP function.
It uses a variant of line search algorithm (VFBLSA in Facchinei-Pang 2003).

function: :doxysiconos:`lcp_newton_FB()`

parameters:


	iparam[0] (in): maximum number of iterations allowed


	iparam[1] (out): number of iterations processed


	iparam[2] (in): if > 0, keep the work vector (reduce the number of memory allocation if the same type of problem is solved multiple times)


	iparam[3] (in): if > 0. use a non-monotone linear search


	iparam[4] (in): if a non-monotone linear search is used, specify the number of merit values to remember


	dparam[0] (in): tolerance


	dparam[1] (out): resulting error







Newton min + FB Solver

a nonsmooth Newton method based based on the minFBLSA algorithm : the descent direction is given
by a min reformulation but the linesearch is done with Fischer-Burmeister (and if needed the gradient direction).

function: :doxysiconos:`lcp_newton_minFB()`

parameters:


	iparam[0] (in): maximum number of iterations allowed


	iparam[1] (out): number of iterations processed


	iparam[2] (in): if > 0, keep the work vector (reduce the number of memory allocation if the same type of problem is solved multiple times)


	iparam[3] (in): if > 0. use a non-monotone linear search


	iparam[4] (in): if a non-monotone linear search is used, specify the number of merit values to remember


	dparam[0] (in): tolerance


	dparam[1] (out): resulting error







Path (Ferris) Solver

This solver uses the external PATH solver

function: :doxysiconos:`lcp_path()`

parameters:


	dparam[0] (in): tolerance







Enumerative Solver

A brute-force method to find the solution of the LCP

function: :doxysiconos:`lcp_enum()`

parameters:


	iparam[0] (in): search for multiple solutions if 1


	iparam[1] (out): key of the solution


	iparam[1] (out): number of solutions


	iparam[3] (in):  starting key values (seed)


	iparam[4] (in):  use DGELS (1) or DGESV (0).


	dparam[0] (in): tolerance







Latin Solver

LArge Time INcrements solver

function: :doxysiconos:`lcp_latin()`

parameters:


	iparam[0] (in): maximum number of iterations allowed


	iparam[1] (out): number of iterations processed


	dparam[0] (in): tolerance


	dparam[1] (out): resulting error


	dparam[2] (in): latin parameter







Latin_w Solver

LArge Time INcrements solver with relaxation

function: :doxysiconos:`lcp_latin_w()`

parameters:


	iparam[0] (in): maximum number of iterations allowed


	iparam[1] (out): number of iterations processed


	dparam[0] (in): tolerance


	dparam[1] (out): resulting error


	dparam[2] (in): latin parameter


	dparam[3] (in): relaxation parameter







Block solver (Gauss Seidel)

Gauss-Seidel for Sparse-Block matrices. n
Matrix M of the LCP must be a SparseBlockStructuredMatrix. n
This solver first build a local problem for each row of blocks and then call any of the other solvers through lcp_driver()`.

function: :doxysiconos:`lcp_nsgs_SBM()`

parameters:


	iparam[0] (in): maximum number of iterations allowed for GS process


	iparam[1] (out): number of GS iterations processed


	iparam[2] (out): sum of all local number of iterations (if it has sense for the local solver)


	dparam[0] (in): tolerance


	dparam[1] (out): resulting error


	dparam[2] (in): sum of all local error values










          

      

      

    

  

    
      
          
            
  
Modeling of non-smooth dynamical systems
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Non Smooth Laws

A non-smooth law is an object used to define the behavior of the systems involved in an Interaction, when a non-smooth event occurs.
For example, in the case of an impact, a Newton impact law will link the pre and post velocities at impact in something like “post-velocity = -e X pre-velocity”.

Each non-smooth law is characterized by:


	a type (more or less the name of its class), i.e. what kind of law is required


	the size of vectors involved in the law


	some specific variables depending on its type.




Nonsmooth laws are defined in classes which name ends with “NSL”. All of them are derived from an abstract class which defines a generic interface, NonSmoothLaw.

Available classes: NonSmoothLaw, ComplementarityConditionNSL, EqualityConditionNSL, MixedComplementarityConditionNSL, MultipleImpactNSL,  NewtonImpactNSL, NewtonImpactFrictionNSL, RelayNSL, NormalConeNSL.

[image: figures/classNonSmoothLaw.*]

Complementarity Condition

nsLawSize: 1.
no specific parameters.




Newton Impact

nsLawSize: 1.

parameter: e, the Newton normal coefficient of restitution.




Newton Impact-Friction

nsLawSize: 2 or 3 (2 or 3 dimensional friction).

parameters: en, et (Newton impact normal and tangential coefficients) and mu, friction coefficient.

Newton Impact Law plus Coulomb Friction.

In this case, y components are in the following order:

*first relation, normal part
*first relation, tangential part
* …
* relation n, normal part
* relation n, tangential part

and so on .

Note also that usually only normal part definition is required for y[0].




Relay

nsLawSize: 1.

parameters: c and d







          

      

      

    

  

    
      
          
            
  
Solvers definition (numerics)

To define a non-smooth problem in Numerics, the structure :doxysiconos:`SolverOptions` is used. It handles the name of the solver and its input-output parameters.


	:doxysiconos:`SolverOptions` main components are:

	
	a name


	two lists of input-output parameters (int: iparam, double: dparam) and their sizes








Check each type of formulation of the problem to find which solvers are available and what are the required parameters,
see for example LCP solvers or Friction-Contact solvers.

As an example, consider a Linear Complementarity Problem :
M is a NumericsMatrix and can be saved as a double* or as a SparseBlockStructuredMatrix.
One needs to define a SolverOptions, say “options”, by choosing one solver among those given in LCP solvers and set:

int nbSolvers = 1;
SolverOptions options;
strcpy(options.solverName,"PGS");
int iparam[2] ={maxIter, 0};
double dparam[2] = {tolerance,0.0};
options.iSize = 2;
options.dSize = 2;
options.iparam = iparam;
options.dparam = dparam;
options.isSet = 1;





And then call the driver:

int info = lcp_driver(myProblem, z,w, &options, nbSolvers, &global_options);





which will result in the resolution of the LCP defined in myProblem thanks to a PGS solver.

On the other side if M is saved as a SparseBlockStructuredMatrix, with N rows of blocks, one needs to used a
“block-solver” with possibly one or more specific local solver dedicated to each local problem.
In that case options must be a vector of SolverOptions, with:


	options[0] the definition for the global “block” solver


	options[i], i>0, the solvers used for each local problem.




Example with a LCP:

// First define a vector of options
int nbSolvers = 3;
SolverOptions options[nbSolvers];

// The global solver:
strcpy(options[0].solverName,"GaussSeidel_SBM");
int iparam[2] ={maxIter, 0};
double dparam[2] = {tolerance,0.0};
options[0].iSize = 2;
options[0].dSize = 2;
options[0].iparam = iparam;
options[0].dparam = dparam;
options[0].isSet = 1;

// The local solvers:
strcpy(options[1].solverName,"PGS");
int iparam[2] ={maxIter, 0};
double dparam[2] = {tolerance,0.0};
options[1].iSize = 2;
options[1].dSize = 2;
options[1].iparam = iparam;
options[1].dparam = dparam;
options[1].isSet = 1;
strcpy(options[2].solverName,"Lemke");
int iparam[2] ={maxIter,0};
double dparam[2] = {tolerance,0.0};
options[2].iSize = 2;
options[2].dSize = 2;
options[2].iparam = iparam;
options[2].dparam = dparam;
options[2].isSet = 1;





The call of the driver remains the same:

int info = lcp_driver(myProblem, z,w, options,nbSolvers, &global_options);





In this case, if the matrix M has N rows of blocks, the global problem will be solved thanks to the Gauss-Seidel block solver, with the first local problem (first row) solved thanks to a PGS and the others with a Lemke.
Note that options[i+1] is used for row i of M, while i<nbSolvers-1 and options[nbSolvers-1] for row i when i>=nbSolvers.



	LCP solvers
	lexicographic Lemke

	QP Solver

	NSQP Solver

	CPG Solver

	PGS Solver

	RPGS Solver

	PSOR Solver

	NewtonMin Solver

	NewtonFB Solver

	Newton min + FB Solver

	Path (Ferris) Solver

	Enumerative Solver

	Latin Solver

	Latin_w Solver

	Block solver (Gauss Seidel)





	Friction-Contact solvers
	2D solvers
	CPG





	3D solvers
	Non-Smooth Gauss Seidel

















          

      

      

    

  

    
      
          
            
  
Nonsmooth problems formulation and solve

When dynamical systems and their interactions have been properly defined inside a model and its nonsmooth dynamical system,
a proper formulation for the latter must be chosen, associated to a nonsmooth solver.


Linear nonsmooth problems

where  are the unknowns.


	Linear Complementarity Problems (:doxysiconos:`LCP`)





	Mixed Linear Complementarity Problems (:doxysiconos:`MLCP`)




where


	:doxysiconos:`Relay`


	:doxysiconos:`Equality`


	:doxysiconos:`AVI`


	2D or 3D friction contact problem :doxysiconos:`FrictionContact`




and a Coulomb friction law.
With  the unknowns,
and 


	multiple-impact problem (:doxysiconos:`OSNSMultipleImpact`)


	primal friction contact problems (:doxysiconos:`GlobalFrictionContact`)




and  belongs to the Coulomb friction law with unilateral contact.

With  the unknowns,
.  is the modified local velocity (), .


	Generic mechanical problem (:doxysiconos:`GenericMechanical`)




Complete problem with bilateral equality, complementarity, impact and friction.




The Simulation process

As for Event-Driven, we introduce level index sets, with level = 0 for first order systems and level=1 for second order systems (this is related to the relative degrees but we won’t get into details about that here).

 is the set of all the potential UnitaryRelations (UR).
For second order systems:
.
Thus, the LCP is built only for unitary relations that belongs to , level=0 for first order and level=1 for second order systems.

Then, the steps of a Moreau’s Time-Stepping simulation will be:

Knowing all values at the beginning of the time step ,

-# compute the free solutions
-# for  formalize and solve a LCP
-# update the state (according to the possibly LCP results)
-# go to next time step

SP::TimeStepping s(new TimeStepping(myModel));
SP::TimeDiscretisation t(new TimeDiscretisation(timeStep,s));

s->initialize();

int N = t->getNSteps(); // Number of time steps

// --- Time loop ---
while(k < N)// for each time step ...
{
// compute xFree, or qFree,vFree
s->computeFreeStep();
// Formalize and solve a LCP
computeOneStepNSProblem("timeStepping");
// Update state, using last computed values
s->update(level); //
// transfer of state i+1 into state i and time incrementation
s->nextStep();
}





Note that all time-independent operators are computed during simulation initialisation.




Customize simulation behavior

Each time :doxysiconos:`ComputeOneStepNS()` function, i.e. the numerics solver, is called, it returns an int, giving some information about the convergence of the solver:


	output = 0 => solver succeeded,


	else, the meaning of output depends on the solver called (see numerics_solvers).




By default, when the convergence is not achieved, an exception is throwed and the process stops.
Change this behavior is possible by defining a specific function of the form:

//
// your inputFile.cpp
//
void myF(int info, SP::Simulation s)
{
// do what you need ...
}

int main(int argc, char* argv[])
{
//
// ...
SP::TimeStepping your_simulation = ...
your_simulation->setCheckSolverFunction(&myF);





Then after each call to your_simulation->computeOneStepNS(…), the function myF will be called.
That may be usefull to change the solver type, the tolerance or whatever is needed.







          

      

      

    

  

    
      
          
            
  
Relations

Relations are used to link local variables of the Interaction and global variables of the DynamicalSystems, and thus define constraints in the systems.

:doxysiconos:`Relation` is an abstract class which provides a generic interface for all types of relations.
Each relation has a type which correspond to the types of dynamical systems they fit with (FirstOrder or Lagrangian), a sub-type, (linear, non linear, scleronomous…).
Usually, “type+subtype” corresponds more or less to the name of the derived class.
Then, depending on the sub-class, each relation holds some plug-in functions or operators used to define the constraints. They are listed below for each available type of relation.

Available classes: :doxysiconos:`FirstOrderR`, :doxysiconos:`FirstOrderLinearR`, :doxysiconos:`FirstOrderLinearTIR`, :doxysiconos:`LagrangianR`, :doxysiconos:`LagrangianRheonomousR`, :doxysiconos:`LagrangianScleronomousR`, :doxysiconos:`LagrangianCompliantR`, :doxysiconos:`LagrangianLinearR`.

[image: figures/relation_classes.*]

First Order Relations


Non Linear

Class :doxysiconos:`FirstOrderR`

We denote:

,  (and their jacobian according to  and ) are defined with some plug-in functions. n
See the doxygen documentation of the class :doxysiconos:`FirstOrderR` to have a list of the set/get/compute functions.

Note: for the signification of , ,  see Interactions between dynamical systems




Linear

Class: :doxysiconos:`FirstOrderLinearR`

Plug-in functions are available for all operators.




Linear with Time Invariant Coefficients

Class :doxysiconos:`FirstOrderLinearTIR`






Lagrangian (second order) Relations


Scleronomous

xClass :doxysiconos:`LagrangianScleronomousR`

The constraints depend only on the state,

with




Rheonomous

Class :doxysiconos:`LagrangianRheonomousR`

The constraints depend on time and state,

with




Compliant

Class: :doxysiconos:`LagrangianCompliantR`

The constraints depends on state and , with a function of time for which  makes sense.

with




Linear and Time Invariant Coefficients

Class: :doxysiconos:`LagrangianLinearR`

Lagrangian linear relations with time-invariant coefficients.






Relations plug-in functions


	FirstOrderR: 


	FirstOrderLinearR: 


	LagrangianScleronomousR: 


	LagrangianRheonomousR: 


	LagrangianCompliantR:  










          

      

      

    

  

    
      
          
            
  
User-defined plugins

Siconos proposes a ‘plugin’ system that allows users to provide their own function(s) to describe some specific behavior for
some classes components.

For example, consider a lagrangian linear dynamical system, where .

Suppose you want to set , then you can define a C function to compute this cosine and ‘plug’ it to
the dynamical system so that each time the system needs to compute its external forces, your cosine function will be called.

At the time, plug-in are available for :doxysiconos:`DynamicalSystems` and :doxysiconos:`Relation`. For both of them and for their derived classes, a list
of the variables that can be plugged is given in ds_plugins and relation_plugins.


	find the variable you want to plug and check what is the expected list of arguments for a function plugged to this variable




(check ds_plugins or relation_plugins).


	write a C function:

extern "C" external_forces(double time, int size, double* fext, int zsize, double *z)
{
for(int i=0;i<size;++i)
   (*fext)(i) = cos(time);
}







	connect your function to the variable. For each ‘plugable’ variable, a setComputeVARNAMEFunction exists

ds->setComputeFExtFunction('myPlugin', 'external_forces');
// ...
ds->computeFExt(2.)
// --> call external_forces with time == 2.










Plugins overview


plugins in siconos classes







	Class Name

	operator

	plugin name

	signature





	:doxysiconos:`DynamicalSystem`

	

	g

	(double time, int size, double* fext, int zsize, double *z)



	:doxysiconos:`LagrangianLinearTIDS`

	

	FExt

	(double time, int size, double* fext, int zsize, double *z)



	:doxysiconos:`FirstOrderR`

	

	h

	(double time, int x.size, double * x, int lambda.size, double * lambda, double * y, int z.size, double * z)









Example

Suppose that you defined a LagrangianDS named lds, and want to set two parameters in the external forces, say mu and lambda.

Then cpp input file looks like:

// In the main file:
double mu , lambda;
// ... give mu and lambda the required values
// ... declare and built your dynamical system
SP::DynamicalSystem lds(new LagrangianDS(...));
// Link with the plug-in function
lds->setComputeFExtFunction("myPlugin.so", "myFExt");


// === First way, with setZ function (copy) ===
// declare and built a SimpleVector of size 2
SimpleVector myZ(2);
myZ(0) = mu;
myZ(1) = lambda;

lds->setZ(myZ);
// In this case, if parameters values are change after this step,
// this won't affect param values inside the dynamical system.
//
//=== Second way, with setZPtr function (pointer link) ===
// declare and built a pointer to SimpleVector of size 2
SP::SimpleVector myZPtr(new SimpleVector(2));
(*myZPtr)(0) = mu;
(*myZPtr)(1) = lambda;

lds->setZPtr(myZPtr);

// Warning: in that case, from this point any change in parameters
// will affect param value in the dynamical system.
//
// Then in the plug-in file, you have access to the parameter values:
extern "C" void myFExt(double time, unsigned int sizeOfq, double *fExt, unsigned int sizeOfZ, double *z)
{
for(unsigned int i = 0; i<sizeOfq;++i)
fExt[i] = cos(z[1]*time) + z[0] ;
// this means that Fext = cos(lambda t) + mu
}











          

      

      

    

  

    
      
          
            
  
Simulation of non-smooth dynamical systems

Once the model (i.e. the nonsmooth dynamical system) has been properly defined and described as explained in Modeling of non-smooth dynamical systems,
the global simulation strategy to formalize and solve this system must be defined.
At the time, two types of algorithms are available in siconos:


	Event-driven algorithms: based on the time-decomposition of the dynamics in modes, time-intervals where the dynamics are smooth, and discrete events, times where the dynamics are nonsmooth.


	Event-capturing algorithms (a.k.a time-stepping), where a time-discretisation of the whole system (smooth dynamics, constraints, nonsmooth laws) is written leading to a one-step nonsmooth problem that must be solved at each time step.




Details, advantages and drawbacks of both methods are largely discussed in :cite:`Acary.Brogliato.2008`.

For both algorithms, the main steps to describe a simulation are:


	define a time discretisation


	describe how dynamical systems will be integrated, thanks to ‘one-step integrators’


	choose a formalisation and a solver for the nonsmooth problem, which leads to what we call ‘one-step nonsmooth problem’ based on numerics solvers.




The types of integrators, solvers, formulation obviously strongly depend on the strategy.
To clarify things before getting into details, here are the standard minimal steps to write to build a simulation:

# define a one-step integrator and associate it to a dynamical system
osi = MoreauJeanOSI(theta)
osi.insertDynamicalSystem(your_ds)

# define a one-step nonsmooth problem
osnspb = LCP()

# build a time discretisation
td = TimeDiscretisation(initial_time, time_step)

# collect all of them into a global simulation
simu = TimeStepping(td, osi, osnspb)

# associate this simulation with a previously defined model (ds and interactions)
# and initialize
my_model.setSimulation(simu)
my_model.initialize()





Depending on your problem, you may have to change the integrator (here a :doxysiconos:`MoreauJeanOSI`), the nonsmooth problem formulation (:doxysiconos:`LCP`) and the
global strategy (:doxysiconos:`TimeStepping`). Details on all the possibilities will be given in the sections below. You may also check the examples package to find some
templates.

Then, the simulation loop will be:

while simu.hasNextEvent():

  # integrate, formalize and solve ...
  simu.computeOneStep()

  # do what you need to save data ...
  dataPlot[k, 0] = s.nextTime()
  dataPlot[k, 1] = q[0]

  # advance to next step
  simu.nextStep()
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Time discretisation

The discretisation scheme is characterized by a vector of size nSteps+1, denoted tk, that handles the values at each time-step, nSteps being the number of time steps. At the time, only a constant time-step (denoted h) time discretisation is available.

A TimeDiscretisation must be linked to one and only one Model (required parameter of any constructor). This Model provides the initial time value and possibly the final time value, which is an optional parameter. Thus depending on the constructor you use, you may need to give the time-step, the final time … n
Just take care to avoid redundant or conflicting information. See the constructors list in the TimeDiscretisation class documentation for full details.

Example:

SP::Model m(new Model(t0)); // only initial time is provided
double h = ...;
unsigned int nSteps = ...;
SP::TimeDiscretisation td(new TimeDiscretisation(h, nSteps,m));
// tk and final time will be automatically computed.
//
// Then a simulation is created and associated to m through td.
SP::Simulation s(new TimeStepping(td));









          

      

      

    

  

    
      
          
            
  
Time integration of the dynamics

Dynamical systems integration over a time-step or between two events must be defined thanks to
‘one-step integrators’.


	Euler-Moreau (:doxysiconos:`EulerMoreauOSI`)




For first-order dynamical systems, in an ‘event-capturing’ simulation strategy.

with a nonsmooth law linking  and ,
and .

Another variant can also be used (FullThetaGamma scheme)


	Moreau-Jean (:doxysiconos:`MoreauJeanOSI`)




For mechanical (second-order) systems, in an ‘event-capturing’ simulation strategy.

with  . The index set  is the discrete equivalent
to the rule that allows us to apply the Signorini  condition at the velocity level.
Numerically, this set is defined as


	Schatzman-Paoli (:doxysiconos:`SchatzmanPaoliOSI`)


	zero-order  (:doxysiconos:`ZeroOrderHoldOSI`)


	Lsodar (:doxysiconos:`LsodarOSI`)




For ‘event-driven’ simulation strategy. Integrator based on LSODAR (https://computation.llnl.gov/casc/odepack/) rootfinding routine :
“Lsodar solves problems dy/dt = f with full or banded Jacobian and automatic method selection, and at the same time, it finds the roots of any of a set of given functions of the form g(t,y). This is often useful for finding stop conditions or points at which switches are to be made in the function f”.
In Siconos, Lsodar is used for event-driven algorithm, to integrate the dynamics with stops at new non-smooth events (violation of a constraint)


	Hem5 (:doxysiconos:`Hem5OSI`)




For ‘event-driven’ simulation strategy. Based on Ernst Hairer HEM5 integrator (http://www.unige.ch/~hairer/software.html)


	Newmark (:doxysiconos:`NewMarkAlphaOSI`)








          

      

      

    

  

    
      
          
            
  Tests on the FrictionContact Solvers.
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